Hereditary spastic paraplegias (HSP) are a rare heterogeneous group of inherited neurodegenerative diseases characterized by progressive lower extremity spasticity and weakness. Mutations of the kinesin family member 5A (KIF5A) gene lead to a spectrum of phenotypes ranging from spastic paraplegia type 10 to Charcot-Marie Tooth Disease type 2. We report the second known case of a mutation in the KIF5A gene at c.610C>T presenting with HSP plus an axonal sensorimotor neuropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062669 | PMC |
http://dx.doi.org/10.1159/000490456 | DOI Listing |
Neurobiol Dis
January 2025
Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands. Electronic address:
Mutations in the microtubule-binding motor protein kinesin 5 A (KIF5A) are implicated in several adult-onset motor neuron diseases, including Amyotrophic Lateral Sclerosis, Spastic Paraplegia Type 10 and Charcot-Marie-Tooth Disease Type 2. While KIF5 family members transport a variety of cargos along axons, the specific cargos affected by KIF5A mutations remain poorly understood. Here, we generated KIF5Anull mutant human motor neurons and analyzed the impact on axonal transport and motor neuron outgrowth and regeneration in vitro.
View Article and Find Full Text PDFCell Death Dis
September 2024
Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy.
Mutations targeting distinct domains of the neuron-specific kinesin KIF5A associate with different neurodegenerative/neurodevelopmental disorders, but the molecular bases of this clinical heterogeneity are unknown. We characterised five key mutants covering the whole spectrum of KIF5A-related phenotypes: spastic paraplegia (SPG, R17Q and R280C), Charcot-Marie-Tooth disease (CMT, R864*), amyotrophic lateral sclerosis (ALS, N999Vfs*40), and neonatal intractable myoclonus (NEIMY, C975Vfs*73) KIF5A mutants. CMT-R864*-KIF5A and ALS-N999Vfs*40-KIF5A showed impaired autoinhibition and peripheral localisation accompanied by altered mitochondrial distribution, suggesting transport competence disruption.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands.
Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by mutations. We generated null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints .
View Article and Find Full Text PDFActa Neuropathol Commun
September 2024
Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors.
View Article and Find Full Text PDFSci Rep
August 2024
Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médicale, Université Montpellier, Montpellier, France.
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by the death of motoneurons. Several mutations in the KIF5A gene have been identified in patients with ALS. Some mutations affect the splicing sites of exon 27 leading to its deletion (Δ27 mutation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!