A variety of technological advances have tremendously improved the ability of surveillance systems to detect and prevent foodborne disease cases and outbreaks. Molecular subtyping methods and surveillance systems, including PFGE and, more recently, whole genome sequencing (WGS) have been particularly important advances, but the responsible food vehicle and causative agent are still only conclusively determined in a small fraction of outbreaks. Microbial foodborne disease cases continue to take a considerable public health toll, primarily in developing countries. According to recent WHO estimates, at least 600 million cases of foodborne illness and 420,000 associated deaths occur each year; the true numbers are likely significantly higher. This review summarizes the current and anticipated global impact of improved technologies for foodborne disease surveillance and proposes key areas that will require particular attention, including the need for training activities, public-private partnerships supporting food safety, and appropriate food safety policy frameworks. The manuscript places particular focus on the development of WGS tools for surveillance of Listeria monocytogenes because this technology represents one of the most disruptive food safety technologies introduced over the last 10 years, which has revolutionized routine surveillance of L. monocytogenes in several countries. As such, it provides valuable insights into how technological advances can improve foodborne illness surveillance and illustrates the training, policy and infrastructure needs created by introduction of disruptive novel technologies. Moreover, WGS can help identify new sources of foodborne outbreaks and inform risk assessments, thereby providing valuable insights for risk-based policies aimed at preventing future foodborne illness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2017.07.006 | DOI Listing |
J Med Microbiol
January 2025
Field Service - South East and London, UK Health Security Agency, London, UK.
Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.
View Article and Find Full Text PDFJ Adv Res
January 2025
Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China. Electronic address:
Introduction: Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections.
View Article and Find Full Text PDFVet Immunol Immunopathol
December 2024
Southeast Area, Agricultural Research Service, U. S. Department of Agriculture, 840 Oval Drive, Raleigh, NC 27606, USA.
Implementation of a vaccination program is one of the most effective means to control infectious diseases during food animal production. Salmonella, a Gram-negative bacterium, is a leading bacterial cause of human foodborne illnesses worldwide. The major source of this microorganism for human infection is from consumption of unsanitary poultry products.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Anses, Nancy Laboratory for Rabies and Wildlife, Malzéville, France.
Cystic and alveolar echinococcosis are severe zoonotic diseases characterized by long asymptomatic periods lasting months or years. Viable Echinococcus spp. eggs released into the environment through the feces of canids can infect humans through accidental ingestion via hand-to-mouth contact or consumption of contaminated food or water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!