The aim of this study was to develop an assay to analyze the serum profile of Mannose-binding lectin (MBL) through a simple and "in-house" method (called "dot-N-man"). Furthermore, the study attempted to associate molecular masses of MBL to the profile of MBL gene polymorphisms in patients with hepatitis C. Heterogeneity in molecular masses of MBL is due to the impairment of oligomers formation, which is linked to genetic polymorphisms in the MBL gene. Individuals with AA genotype (wild-type) produce high-molecular-mass proteins, whereas AO and OO individuals produce intermediate and low-molecular-mass proteins, respectively. Sera of thirty patients carrying the hepatitis C virus (HCV) were investigated using MBL binding assay with mannan-coated nitrocellulose (dot-N-man). Purified MBL was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Dot-N-Man assay yielded MBL with molecular masses ranging between 55 and 320 kDa, comparable to low and high molecular mass forms of MBL. Nonreducing SDS-PAGE showed high molecular mass bands in all AA individuals while bands of 270 and 205 kDa were observed in sera for a number of patients with AO and OO genotypes, respectively. Immunoblotting confirmed the MBL samples obtained from the dot-N-man. These results provide new insights to understand the MBL molecular forms profile in patients infected with HCV- which could be useful in future investigations on the influence of the MBL structure/genotype on both the progression of infection and the response to hepatitis C therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2018.06.015 | DOI Listing |
J Periodontol
January 2025
Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
Background: To investigate the effect of rheumatoid arthritis (RA) on the incidence of peri-implantitis (PI) and peri-implant mucositis (PIM).
Methods: Radiographic and clinical chart reviews were conducted to measure the probing depth (PD), bleeding on probing, and marginal bone loss (MBL) around the implants to diagnose peri-implant diseases based on the 2017 workshop classification. Values were recorded at the baseline (T0) to the last available chart and radiograph (T1).
Res Vet Sci
January 2025
Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; Complutense University of Madrid, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, av. Puerta de Hierro s/n, 28040 Madrid, Spain.
Antimicrobial resistance (AMR) is a major global health threat, exacerbated by globalization which facilitates the spread of resistant bacteria. Addressing this issue requires a One Health perspective, involving humans, animals, and the environment. This study aims to compare the phenotypic resistance profiles of 69 clinical bacterial isolates (Enterobacteriaceae and Pseudomonaceae) from a Veterinary Teaching Hospital in Spain with their genotypic resistance profiles based on the presence of Extended-Spectrum Beta-Lactamases (ESBLs), AmpC and carbapenemases -enconding genes.
View Article and Find Full Text PDFAnal Chem
January 2025
The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.
"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.
View Article and Find Full Text PDFObjectives: The goal of this systematic review was to critically appraise the existing evidence evaluating osteoporosis' effects on dental implant osseointegration and survival rate.
Data Source: A search was conducted in two databases, PubMed/MEDLINE and Scopus, until October 2024, using the keywords 'osteoporosis,' 'osteopenia,' 'osseointegration,' and 'dental implants'. The inclusion criteria were clinical studies that evaluated the implant placement, complications, and osseointegration results in patients with osteoporosis; literature reviews and clinical studies addressing the outcome were considered; and articles written in English and published since 2000.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!