The "speed limit" for macromolecular crystal growth.

Protein Sci

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125.

Published: October 2018

A simple "diffusion-to-capture" model is used to estimate the upper limit to the growth rate of macromolecular crystals under conditions when the rate limiting process is the mass transfer of sample from solution to the crystal. Under diffusion-limited crystal growth conditions, this model predicts that the cross-sectional area of a crystal will increase linearly with time; this prediction is validated by monitoring the growth rate of lysozyme crystals. A consequence of this analysis is that when crystal growth is diffusion-limited, micron-sized crystals can be produced in ~1 s, which would be compatible with the turnover time of many enzymes. Consequently, the ability to record diffraction patterns from sub-micron sized crystals by X-ray Free Electron Lasers and micro-electron diffraction technologies opens the possibility of trapping intermediate enzyme states by crystallization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222248PMC
http://dx.doi.org/10.1002/pro.3491DOI Listing

Publication Analysis

Top Keywords

crystal growth
12
growth rate
8
crystal
5
growth
5
"speed limit"
4
limit" macromolecular
4
macromolecular crystal
4
growth simple
4
simple "diffusion-to-capture"
4
"diffusion-to-capture" model
4

Similar Publications

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.

View Article and Find Full Text PDF

Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.

View Article and Find Full Text PDF

Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!