Amphotericin B (A) as an antileishmanial drug has limited clinical application owing to severe side-effects and low-water solubility. This is the first study reported using Anionic Linear Globular Dendrimer (ALGD) as A carrier for the increase of A solubility rate, decrease its toxicity, and improve its therapeutic effects. ALGD was synthesized and A was loaded into nanoparticles for the first time with the drug-loading efficiency of 82%. Drug loading was confirmed using characterization methods. The drug solubility rate was increased by 478-folds. The results of the study showed that the A toxicity was significantly decreased by 95% in vitro and in vivo environments, which was confirmed by pathology findings and enzymatic evaluation. Furthermore, the nanodrug caused that mortality rate was reached to zero. Moreover, the nanodrug was as potent as the free drug and glucantime (GUL) in reducing the parasite burden and parasite number. These findings indicated the potency of ALGD to decrease the drug side-effects, increase the drug solubility rate, and improve the drug efficacy. Moreover, the nanoformulation was a non-toxic and cost-effective formulation. The conformity between in vitro and in vivo results suggested that the A-loaded ALGD could be considered as a promising candidate in reducing the side-effects of A in leishmaniasis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-018-6122-9DOI Listing

Publication Analysis

Top Keywords

solubility rate
12
anionic linear
8
linear globular
8
globular dendrimer
8
drug solubility
8
vitro vivo
8
drug
7
reduction toxicity
4
toxicity amphotericin
4
amphotericin loading
4

Similar Publications

This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).

View Article and Find Full Text PDF

Eutectogel-Based Drug Delivery: An Innovative Approach for Atenolol Administration.

Pharmaceutics

December 2024

Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.

Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability.

View Article and Find Full Text PDF

This study investigates the impact of supercritical antisolvent (SAS) process parameters on the particle formation of telmisartan, a poorly water-soluble drug. A fractional factorial design was employed to examine the influence of the SAS process parameters, including solvent ratio, drug solution concentration, temperature, pressure, injection rate of drug solution, and CO₂ flow rate, on particle formation. Solid-state characterizations of the SAS process particles using XRD and FT-IR confirmed their amorphous nature.

View Article and Find Full Text PDF

Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.

View Article and Find Full Text PDF

Nabumetone (NAB) is a poorly soluble nonsteroidal anti-inflammatory prodrug (BCS class II drug) whose solubility is significantly improved by complexation with cyclodextrins (CDs). : The solid complexes, in a 1:1 molar ratio, were prepared by mechanochemical activation by grinding, using β-cyclodextrin (β-CD) and its derivatives, hydroxypropyl- and sulfobutylether-β-cyclodextrin (HP-β-CD and SBE-β-CD). The complexation was confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier-transformed infrared spectroscopy (ATR-FTIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!