Streptomyces cyanogenus S136 is the only known producer of landomycin A (LaA), one of the largest glycosylated angucycline antibiotics possessing strong antiproliferative properties. There is rising interest in elucidation of mechanisms of action of landomycins, which, in turn, requires access to large quantities of the pure compounds. Overproduction of LaA has been achieved in the past through manipulation of cluster-situated regulatory genes. However, other components of the LaA biosynthetic regulatory network remain unknown. To fill this gap, we elucidated the contribution of AdpA family pleiotropic regulators in landomycin production via expression of adpA genes of different origins in S. cyanogenus S136. Overexpression of the native S. cyanogenus S136 adpA ortholog had no effect on landomycin titers. In the same time, expression of several heterologous adpA genes led to significantly increased landomycin production under different cultivation conditions. Hence, heterologous adpA genes are a useful tool to enhance or activate landomycin production by S. cyanogenus. Our ongoing research effort is focused on identification of mutations that render S. cyanogenus AdpA nonfunctional.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-018-9249-1DOI Listing

Publication Analysis

Top Keywords

landomycin production
16
cyanogenus s136
16
heterologous adpa
12
adpa genes
12
streptomyces cyanogenus
8
landomycin
6
cyanogenus
6
adpa
6
adpa transcription
4
transcription factors
4

Similar Publications

Microbial-derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug-resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low-yield biosynthetic gene clusters in the genus Streptomyces. However, low natural product yields-improvements to which have been hindered by the lack of high throughput methods-have slowed the discovery and development of many potential therapeutics.

View Article and Find Full Text PDF

Microbial derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have potential as new therapeutics to target drug resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low yield biosynthetic gene clusters in the genus . Here, we describe our efforts to improve yields of landomycins - angucycline family polyketides under investigation as cancer therapeutics - by a genetically modified 136.

View Article and Find Full Text PDF

LanK is a TetR type regulatory protein that coordinates the late steps of the biosynthesis of the landomycin family of antitumor angucyclic polyketides and their export from the cells of Streptomyces cyanogenus S136. We recently described the structure of LanK and showed that it is the carbohydrate portion of the landomycins that is responsible for abrogating the repressing effect of LanK on landomycin production and export. The effect has been established in a series of in vitro tests using synthetic analogs of the landomycin carbohydrate chains.

View Article and Find Full Text PDF

Streptomyces lavendulae subsp. lavendulae CCM 3239 (formerly Streptomyces aureofaciens CCM 3239) contains a type II polyketide synthase (PKS) biosynthetic gene cluster (BGC) aur1 whose genes were highly similar to angucycline BGCs. However, its product auricin is structurally different from all known angucyclines.

View Article and Find Full Text PDF

Direct Synthesis of 2,6-Dideoxy-β-glycosides and β-Rhamnosides with a Stereodirecting 2-(Diphenylphosphinoyl)acetyl Group.

Angew Chem Int Ed Engl

August 2022

Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.

Anomeric stereocontrol is usually one of the major issues in the synthesis of complex carbohydrates, particularly those involving β-configured 2,6-dideoxyglycoside and d/l-rhamnoside moieties. Herein, we report that 2-(diphenylphosphinoyl)acetyl is highly effective as a remote stereodirecting group in the direct synthesis of these challenging β-glycosides under mild conditions. A deoxy-trisaccharide as a mimic of the sugar chain of landomycin E was prepared stereospecifically in high yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!