The role of cerebellum in coordination of somatic motor activity has been studied in detailed in various species. However, experimental and clinical studies have shown the involvement of the cerebellum with various visceral and cognitive functions via its vast connections with the central nervous system. The present study aims to define the cortical and subcortical and brain stem connections of the cerebellum via the superior (SCP) and middle (MCP) cerebellar peduncle using biotinylated dextran amine (BDA) and Fluoro-Gold (FG) tracer in Wistar albino rats. 14 male albino rats received 20-50-nl pressure injections of either FG or BDA tracer into the SCP and MCP. Following 7-10 days of survival period, the animals were processed according to the related protocol for two tracers. Labelled cells and axons were documented using light and fluorescence microscope. The SCP connects cerebellum to the insular and infralimbic cortices whereas, MCP addition to the insular cortex, it also connects cerebellum to the rhinal, primary sensory, piriform and auditory cortices. Both SCP and MCP connected the cerebellum to the ventral, lateral, posterior and central, thalamic nuclei. Additionally, SCP also connects parafasicular thalamic nucleus to the cerebellum. The SCP connects cerebellum to basal ganglia (ventral pallidum and clastrum) and limbic structures (amygdaloidal nuclei and bed nucleus of stria terminalis), however, the MCP have no connections with basal ganglia or limbic structures. Both the SCP and MCP densely connects cerebellum to various brainstem structures. Attaining the knowledge of the connections of the SCP and MCP is important for the diagnosis of lesions in the MCP and SCP and would deepen current understanding of the neuronal circuit of various diseases or lesions involving the SCP and MCP.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JIN-180090DOI Listing

Publication Analysis

Top Keywords

scp mcp
20
connects cerebellum
16
scp connects
12
cerebellum
10
scp
10
mcp
9
cortical subcortical
8
subcortical brain
8
brain stem
8
stem connections
8

Similar Publications

Modified citrus pectin (MCP) modulates galectin-3, a key player in neuroinflammation linked to Alzheimer's disease. By inhibiting galectin-3, MCP reduces the brain's inflammatory response and may alleviate cognitive decline. This study examines MCP's impact on neuroinflammation, cognitive function, and its role in galectin-3 inhibition in a dementia model.

View Article and Find Full Text PDF

Damage to cerebellar peduncles is common in patients with relapsing-remitting multiple sclerosis (RRMS). This can lead to a diverse range of motor and cognitive disabilities. Here, we aimed to evaluate the quantitative alterations of cerebellar peduncles using diffusion tensor imaging (DTI).

View Article and Find Full Text PDF
Article Synopsis
  • Carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) are serious public health threats, particularly those that produce carbapenemases, which makes them resistant to many antibiotics.
  • Analysis of data from the Antimicrobial Resistance Laboratory Network (AR Lab Network) from 2018 to 2022 revealed that among the tested isolates, 35% were single-carbapenemase producing (SCP) and only 1% were multiple-carbapenemase producing (MCP).
  • The proportion of MCP-CRE detections has shown a gradual increase, indicating the need for ongoing monitoring and research efforts to tackle these dangerous bacteria.
View Article and Find Full Text PDF

Introduction: There is a wide range of clinical manifestations in sickle cell disease (SCD). Despite having the same condition, each person's response to disease complications differs greatly. Individuals can be categorized according to the severity of their diseases to determine which group they fall into and receive the appropriate care based on their needs.

View Article and Find Full Text PDF

Cerebellar network alterations in adult attention-deficit/hyperactivity disorder.

J Psychiatry Neurosci

July 2024

From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)

Background: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. Underlying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the cerebellar peduncles contribute to ADHD pathophysiology among adults.

Methods: We applied diffusion-weighted spherical deconvolution tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methylphenidate, based on at least 30% symptom improvement at 2 months) and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!