Cell-derived vesicles are membrane-enclosed organelles that transport material inside and outside the cell. Plant-derived vesicles are receiving more and more attention due to their potential as nanovectors for the delivery of biologically active substances. Here, we studied the heterogeneity and protein biocargo in citrus fruit juice sac cell-derived vesicles populations. Micro- and nano-sized vesicle fractions were isolated from four citrus species, C. sinensis, C. limon, C. paradisi and C. aurantium, characterized using physicochemical methods and protein cargos were compared using label-free quantitative shotgun proteomics. In each sample approximately 600-800 proteins were identified. Orthologues of most of the top-ranking proteins have previously been reported in extracellular vesicles of mammalian origin. High expression levels of patellin-3-like, clathrin heavy chain, heat shock proteins, 14-3-3 protein, glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase 6 were measured in all samples while aquaporin was highly expressed only in the nanovesicle fractions. Bioinformatics revealed more than hundred protein orthologues potentially implicated in vesicular trafficking. In particular, the presence of CCV, COPI and COPII coat proteins indicates the presence of heterogeneous populations of intracellular transport vesicles. Moreover, a high number of different enzymes including hydrolases and oxidoreductases are ubiquities in citrus fruit sac cell-derived vesicles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2018.07.006 | DOI Listing |
Small
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure.
View Article and Find Full Text PDFChin J Nat Med
December 2024
State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Exosomes (exos), nanoscale extracellular vesicles, play a critical role in tissue development and function. Stem cell-derived exos, containing various tissue repair components, show promise as natural therapeutic agents in disease treatment and regenerative medicine. However, challenges persist in their application, particularly in targeted delivery and controlled release, which are crucial for enhancing their biological efficacy.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Colorectal cancer (CRC) ranks as the third most common cancer worldwide and remains a major cause of cancer-related deaths, necessitating the development of innovative therapeutic approaches beyond conventional treatment modalities. Conventional therapies, such as radiation, chemotherapy, and surgery, are hindered by challenges like imprecise targeting, substantial toxicity, and the development of resistance. Exosome-driven nano-immunotherapy has emerged as a groundbreaking approach that leverages the natural properties of exosomes-cell-derived vesicles known for their role in intercellular communication-to deliver therapeutic agents with high precision and specificity.
View Article and Find Full Text PDFJ Extracell Vesicles
December 2024
Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood.
View Article and Find Full Text PDFPostgrad Med J
December 2024
State Key Laboratory of Oral Diseases and National Center of Stomatology and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Extracellular vesicles (EVs) are membrane vesicles derived from cells and serve as an endogenous mechanism for intercellular communication. Since the discovery of their capacity to effectively transfer biological information, their potential as drug delivery vehicles has garnered significant scientific interest. Particularly, EVs derived from mesenchymal cells (MSC-EVs) have emerged as a highly promising method for drug delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!