Understanding the role of gold nanoparticles (AuNPs) in electrochemiluminescence (ECL) processes of the Ru(bpy) (bpy= 2, 2'-bipyridine)/tripropylamine (TPA) system would be beneficial to develop novel ECL sensors for a variety of applications. In this work, we found that the AuNPs on the surface of indium tin oxide (ITO) electrode could catalyze the electrochemical oxidation of TPA, greatly enhancing the ECL signal of Ru(bpy)/TPA, present in the solution. If physical separation of AuNPs away from electrode surface after hybridization with target ssDNA, ECL signal decreased dramatically due to the loss of electrochemical activity of AuNPs, based on which a sensitive and specific DNA sensor in a "switch-off" mode was constructed with a detection limit of 0.2 pM. In addition, a suppressing effect of the AuNPs on the ECL of Ru(bpy) was experimentally confirmed by decreasing the electrocatalytic effect to overall ECL emission, including selection of oxalate as a coreactant instead of TPA, or introduction of gold electrode as substrate. Furthermore, when Ru(bpy) and AuNPs were both immobilized on the ITO electrode at close proximity, the ECL quenching induced by energy/electron transfer was predominant. ECL emission of the Ru(bpy)/TPA system resulted from a competition between electrocatalytic enhancement and quenching effect. However, the quenched ECL signal would return in case of the AuNPs moving far away from ECL emitters after a hybridization reaction as before, and a separation distance dependent surface enhancement was observed as well. Based on the role change for AuNPs from quenching to enhancing ECL intensity of Ru(bpy)/TPA system, a novel ECL DNA sensing strategy in a "turn-on" mode was developed, enabling quantitative analysis of target ssDNA over the range of 0.05 pM to 0.5 nM with a detection limit of 12 fM. Overall, we demonstrated the existence of three effects of AuNPs on the ECL of Ru(bpy)/TPA system, and which played the leading role was dependent on the placement of AuNPs, Ru(bpy), and their separation distance. The ECL sensors based on the role change for AuNPs showed both high sensitivity and excellent selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.07.023DOI Listing

Publication Analysis

Top Keywords

ecl
14
ecl signal
12
rubpy/tpa system
12
aunps
11
quenching enhancing
8
gold nanoparticles
8
novel ecl
8
ecl sensors
8
ito electrode
8
enhancing ecl
8

Similar Publications

Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.

View Article and Find Full Text PDF

Purpose: To analyze the clinical outcome of organ-cultured endothelium-outward preloaded DMEK (pDMEK) using the RAPID cartridge.

Methods: This prospective study included 80 eyes of 80 patients who received a pDMEK. Best-corrected visual acuity (BCVA), endothelial cell count (ECC), and central corneal thickness were measured preoperatively and 4 to 6 weeks, 3 months, 6 months, and 1 year postoperatively.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, significantly impairing the daily life of elderly individuals. The low abundance of blood-based biomarkers in AD necessitates higher analytical technique requirements. Herein, one novel iridium-based ECL self-enhanced nanoemitter (TPrA@Ir-SiO) was unprecedentedly reported, and it was further used to construct an ultrasensitive ECL magnetic immunosensor by a multiple-signal amplification strategy to unequally sensitively and accurately detect the AD blood-based biomarker (P-tau181) in this work.

View Article and Find Full Text PDF

, a significant zoonotic pathogen, annually caused substantial economic losses in the swine industry and had intensified threat to public health due to the recent emergence of human-associated clade. In this study, we discovered that the rare-earth metal-based metal-organic frameworks (Y-BTC) possessed excellent ECL capabilities. After prereduction at high voltage, its ECL intensity was enhanced by two times.

View Article and Find Full Text PDF

Education Research: Making a Tweetorial Fly: Features of Educational Social Media Posts Associated With High Sharing and Engagement.

Neurol Educ

December 2024

From the Departments of Neurology and Neurosurgery (C.S.W.A., E.C.L.), Emory University School of Medicine, Atlanta, GA; Division of Biostatistics (T.M.), Rollins School of Public Health, Emory University, Atlanta, GA; Department of Neurology (G.F.P.), University of Pittsburgh, PA; Department of Neurology (A.S.Z.), Weill Cornell Medical College, New York, NY; Emory University School of Medicine (N.D.), Atlanta, GA; Consulting Web Developer (S.M.), Scotland; Department of Neurology (A.S.), Wake Forest University, Winston-Salem, NC; Departments of Neurology and Neurosurgery (N.S.D), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (A.L.B.), University of California, San Francisco; Department of Neurology (N.A.M.), University of Maryland School of Medicine, Baltimore, MD; and Department of Neurology (L.K.J.), Mayo Clinic, Rochester, MN.

Background And Objectives: Social media platforms such as X (formerly Twitter) are increasingly used in medical education. Characteristics of tweetorials (threaded teaching posts) associated with higher degrees of engagement are unknown. We sought to understand features of neurology-themed tweetorials associated with high sharing and engagement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!