AI Article Synopsis

Article Abstract

Shallow-water corals of the Mediterranean Sea are facing a dramatic increase in water temperature due to climate change, predicted to increase the frequency of bleaching and mass mortality events. However, supposedly not all corals are affected equally, as they show differences in stress susceptibility, as suggested by physiological outputs of corals along temperature gradients and under controlled conditions in terms of reproduction, demography, growth, calcification, and photosynthetic efficiency. In this study, gene expression and induction of a 70-kDa heat shock protein (HSP70) was analyzed in five common shallow-water hard corals in the Mediterranean Sea, namely Astroides calycularis, Balanophyllia europaea, Caryophyllia inornata, Cladocora caespitosa, and Leptopsammia pruvoti. The main aim was to assess the contribution of this evolutionary conserved cytoprotective mechanism to the physiological plasticity of these species that possess different growth modes (solitary vs colonial) and trophic strategies (zooxanthellate vs azooxanthellate). Using quantitative real-time PCR, in situ hsp70 baseline levels and expression profiles after a heat-shock exposure were assessed. Levels of hsp70 and heat stress induction were higher in zooxanthellate than in azooxanthellate species, and different heat stress transcriptional profiles were observed between colonial and solitary zooxanthellate corals. On the whole, the hsp70 transcriptional response to heat stress aligns with stress susceptibility of the species and suggests a contribution of trophic strategy and morphology in shaping coral resilience to stress. Understanding these molecular processes may contribute to assess the potential effects and relative resilience of Mediterranean corals under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2018.07.006DOI Listing

Publication Analysis

Top Keywords

stress susceptibility
12
corals mediterranean
12
mediterranean sea
12
heat stress
12
transcriptional response
8
response heat
8
heat shock
8
differences stress
8
shallow-water corals
8
climate change
8

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications.

Pharmaceuticals (Basel)

January 2025

Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.

Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.

View Article and Find Full Text PDF

Effect of Gradient Transition Layer on the Cracking Behavior of Ni60B (NiCrBSi) Coatings by Laser Cladding.

Materials (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!