Vernonia cinerea (V cinerea) is a plant distributed in grassy areas in Southeast Asia and has several pharmacological effects, including antidiabetic activity. However, the information available regarding the effect of V cinerea on insulin resistance in high-fat diet (HFD)-induced obese mice is not yet determined. We hypothesized that V cinerea water extract (VC) improves insulin sensitivity in HFD-induced obese mice by modulating both phosphatidylinositol-3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) pathways in liver, skeletal muscle, and adipose tissue. Obesity was induced in mice from the Institute for Cancer Research by feeding an HFD 188.28 kJ (45 kcal % lard fat) for 12 weeks. During the last 6 weeks of the HFD, obese mice were treated with VC (250 and 500 mg/kg). We found that VC at both doses significantly reduced the hyperglycemia, hyperinsulinemia, hyperleptinemia, and hyperlipidemia. Obese mice treated with VC could increase serum adiponectin but reduce the proinflammatory cytokines, tumor necrosis factor-α, and monocyte chemoattractant protein-1. The extracts decreased triglyceride storage in liver and skeletal muscle of obese mice. The average size of fat cells was smaller in VC-treated groups than that of the HFD group. The protein expressions of PI3K and AMPK pathways in liver, skeletal muscle, and adipose tissue were upregulated (increased phosphorylation of PI3K, protein kinase B, AMPK, and acetyl-CoA carboxylase) by VC treatment. Furthermore, the glucose transporter 4 was increased in muscle and adipose tissue in obese mice treated with VC. These data indicate that VC treatment stimulates phosphorylation of PI3K and AMPK pathways in liver, muscle, and adipose tissue. Stimulating these pathways may improve impaired glucose and lipid homeostasis in an HFD-induced obesity mouse model. Based on these findings, it appears that VC has potential as a functional food or therapeutic agent in management of insulin resistance related diseases, such as type 2 diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2018.04.020DOI Listing

Publication Analysis

Top Keywords

obese mice
28
muscle adipose
16
adipose tissue
16
insulin resistance
12
ampk pathways
12
pathways liver
12
liver skeletal
12
skeletal muscle
12
mice treated
12
vernonia cinerea
8

Similar Publications

Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Fighting Fire with Fire: Impact of Sugary Diets on Metabolically Deranged Mice.

Nutrients

December 2024

Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA.

There is controversy about the health risks of sugary diets. A recent study reported that chronic consumption of 11% sugar solutions improved glycemic control in lean mice. Based on this finding, we hypothesized that chronic consumption of the same 11% sugar solutions would also improve glycemic control in metabolically deranged mice.

View Article and Find Full Text PDF

Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.

Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).

View Article and Find Full Text PDF

Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!