Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice.

Nutr Res

Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 510080, China. Electronic address:

Published: August 2018

Atherosclerosis is a major cause of cardiovascular disease caused by high cholesterol. Reduced intestinal cholesterol absorption has been shown to exert strong cholesterol-lowering and antiatherogenic effects. Previously, we reported that curcumin reduced cholesterol absorption in high-fat diet-fed hamster by downregulating the intestinal expression of Niemann-Pick C1-like 1. Here, we tested the hypothesis that supplementation with curcumin can also reduce intestinal cholesterol absorption in high-fat diet-fed apolipoprotein E knockout (ApoE) mice and prevent atherosclerosis development. ApoE mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Aortic sinus sections revealed that curcumin supplementation reduced the extent of atherosclerotic lesions by 45%. Curcumin treatment also reduced cholesterol accumulation in the aortas by 56% and lowered plasma total cholesterol and low-density lipoprotein cholesterol levels. Moreover, the antiatherogenic and cholesterol-lowering effects of curcumin coincided with a significant decrease in intestinal cholesterol absorption. It was reduced by nearly 51%, and the decreased cholesterol absorption was modulated by inhibiting the intestinal expression of Niemann-Pick C1-like 1, predominantly in the duodenal and jejunal segments of the small intestine. These findings support the hypothesis that curcumin supplementation reduces intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed ApoE mice. Curcumin affords a potent antiatherogenic action by inhibiting intestinal cholesterol absorption in the mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2018.04.017DOI Listing

Publication Analysis

Top Keywords

cholesterol absorption
32
intestinal cholesterol
24
high-fat diet-fed
16
cholesterol
12
apoe mice
12
supplementation curcumin
8
intestinal
8
absorption
8
absorption prevents
8
prevents atherosclerosis
8

Similar Publications

Fabrication of oat β-glucan-starch composite systems by sequential extraction as batters for deep-fried mushrooms to prevent oil penetration.

Food Chem

January 2025

Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China. Electronic address:

Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential.

View Article and Find Full Text PDF

Maternal nutritional status plays a crucial role in embryonic development and has persistent effects on postnatal chicks. Vitamin C (VC) plays an important role in embryonic and postnatal development involved in nutri-epigenetics. The present study was conducted to investigate the effects of feeding (IOF) of VC on embryonic development, egg hatching time, and chick rectal temperature.

View Article and Find Full Text PDF

Tea (Camellia sinensis) Seed Saponins Act as Sebosuppression Agents via the AMPK/mTOR Pathway.

J Cosmet Dermatol

January 2025

Cosmetic Research Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.

Background: Excessive lipogenesis of the skin triggers some dermatological concerns, such as enlarged pores, acne, and blackheads. Although topical drug treatments can offer temporary relief, their prolonged usage may lead to side effects of dryness, irritation, or allergic reactions. Consequently, the development of safer and efficacious ingredients in cosmetics for managing sebum overproduction represents a significant yet challenging endeavor.

View Article and Find Full Text PDF

Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability.

Am J Physiol Gastrointest Liver Physiol

January 2025

Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.

Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes.

View Article and Find Full Text PDF

Integrated electronic nose and multi-omics reveal changes in flavour characterization of cashmere goats and tan sheep meat.

Food Chem X

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.

This study aimed to employ a multi-omics method to identify key compounds contributing to the sensory flavour of mutton and to investigate the internal correlation between volatile metabolites and lipids in Cashmere goats and Tan sheep. The results demonstrate that the electronic nose can effectively and quickly distinguish goats and sheep meat. A total of 18 volatile metabolites and 314 lipids were identified as significant contributors to the flavour difference between goats and sheep meat, as determined by HS-SPME-GC-MS and lipidomic respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!