A key question in aquatic elemental cycling is related to the influence of bottom water oxygen conditions in regulating the burial and release of carbon under climate warming. In this study, we used head capsules of Chironomidae larvae to assess community and diversity change between the past (estimated as Pre-Industrial Period) and present and to reconstruct changes in hypolimnetic oxygen conditions from 30 subarctic ecotonal lakes (northeastern Lapland) using the top-bottom paleolimnological approach applying surface sediment (topmost 0-2 cm) and reference (4-5 cm) samples. Subsequently, we tested the findings against dissolved organic carbon (DOC) concentration of the sites. We found that the benthic communities were statistically dissimilar between the past and the present with largest changes occurring in the more transparent oligo-mesohumic lakes. However, murky polyhumic lakes displayed uniformly a decrease in diversity. The chironomid-inferred oxygen values showed a general decrease toward the present with largest shifts in low-DOC lakes, whereas no significant changes were found in the hypolimnetic oxygen conditions of high-DOC lakes, which were often located in wetland areas. These finding suggest that lakes associated with constant organic carbon inputs are more resilient toward climate-induced reductions in hypolimnetic oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.07.306 | DOI Listing |
Sci Total Environ
February 2025
Department of Geography, Royal Holloway University of London, Surrey, UK.
Future climate projections are expected to have a substantial impact on boreal lake circulation regimes. Understanding lake sensitivity to warmer climates is therefore critical for mitigating potential ecological and societal impacts. The Holocene Thermal Maximum (HTM; ca 7-5 ka BP) provides a valuable analogue to investigate lake responses to warmer climates devoid of major anthropogenic influences.
View Article and Find Full Text PDFGlob Chang Biol
November 2024
Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany.
Many clearwater lakes increasingly show symptoms of eutrophication, but the underlying causes are largely unknown. We combined long-term water chemistry data, multi-year sediment trap measurements, sediment analyses and simple mass balance models to elucidate potential causes of eutrophication of a deep temperate clearwater lake, where total phosphorus (TP) concentrations quadrupled within a decade, accompanied by expanding hypolimnetic anoxia. Discrepancies between modeled and empirically determined P inputs suggest that the observed sharp rise in TP was driven by internal processes.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada. Electronic address:
Base Mine Lake (BML), the first full-scale demonstration of oil sands tailings pit lake reclamation technology, is experiencing expansive, episodic hypolimnetic euxinia resulting in greater sulfur biogeochemical cycling within the water cap. Here, Fluid Fine Tailings (FFT)-water mesocosm experiments simulating the in situ BML summer hypolimnetic oxic-euxinic transition determined sulfur biogeochemical processes and their controlling factors. While mesocosm water caps without FFT amendments experienced limited geochemical and microbial changes during the experimental period, FFT-amended mesocosm water caps evidenced three successive stages of S speciation in ∼30 days: (S1) rising expansion of water cap euxinia from FFT to water surface; enabling (S2) rapid sulfate (SO) reduction and sulfide production directly within the water column; fostering (S3) generation and subsequent consumption of sulfur oxidation intermediate compounds (SOI).
View Article and Find Full Text PDFChemosphere
September 2024
Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Continuous nitrate treatment is an innovative, nature-based and cost-effective restoration method that has been implemented in a small, hypereutrophic lake by redirecting the nitrate-rich waters of the lake's natural tributaries into its hypolimnion. The aim of this treatment is to increase the redox potential at the sediment-water interface in order to provide conditions for efficient phosphorus binding. To assess the effects of this treatment, studies of the physico-chemical and biological parameters of the lake waters were carried out before its application (PreNT - years 2005-2007), during its application (FullNT - 2008-July 2019), and in the period when installation was partly clogged (LimNT- August 2019-2021).
View Article and Find Full Text PDFWater Res
September 2024
Jacobs Engineering Group, Inc., Saint Paul, MN, United States. Electronic address:
Aeration is used globally as a remediation method for lakes and reservoirs with methods generally falling into two categories, those which preserve natural stratification (hypolimnetic aeration; HA) and those which destratify reservoirs through mixing of the water column (destratification aeration; DA). The United Kingdom and Australia largely focus on DA methods to manage harmful algal blooms and decrease trace metal concentrations, whereas the United States and Europe frequently focus on HA techniques to increase dissolved oxygen (DO) concentrations and decrease benthic nutrient and metal release from the sediment. A more holistic understanding of how the different techniques influence water quality in regard to raw water supply and ecosystem health should lead to more efficient treatment, reducing wasted energy and other costs during both reservoir management and the drinking-water treatment process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!