Unmodified and multi-walled carbon nanotube (MWCNT) modified tetrahedral amorphous carbon (ta-C) films of 15 and 50 nm were investigated as potential in vivo sensor materials for the detection of dopamine (DA) in the presence of the main interferents, ascorbic acid (AA) and uric acid (UA). The MWCNTs were grown directly on ta-C by chemical vapor deposition (designated as ta-C+CNT) and were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Electroanalytical sensitivity and selectivity were determined with cyclic voltammetry. Biocompatibility of the materials was assessed with cell cultures of mouse neural stem cells (mNSCs). The detection limits of DA for both ta-C and ta-C+CNT electrodes ranged from 40 to 85 nM, which are well within the required range for in vivo detection. The detection limits were lower for both ta-C and ta-C+CNT electrodes with 50 nm of ta-C compared to 15 nm. The ta-C electrodes showed a large dynamic linear range of 0.01-100 µM but could not resolve between the oxidation peaks of DA, AA and UA. Modification with MWCNTs, however, resulted in excellent selectivity and all three analytes could be detected simultaneously at physiologically relevant concentrations using cyclic voltammetry. Based on cell culture of mNSCs, both ta-C and ta-C+CNT exhibited good biocompatibility, demonstrating their potential as in vivo sensor materials for the detection of DA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2018.07.018 | DOI Listing |
Biosensors (Basel)
December 2024
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, E46022 Valencia, Spain.
(1) Background: In drug discovery and pharmaceutical quality control, a challenge is to assess protein extracts used for allergy therapy and in vivo diagnosis, such as prick tests. Indeed, there are significant differences between the features of marketed products due to variations in raw materials, purification processes, and formulation techniques. (2) Methods: A protein array technology has been developed to provide comprehensive information on protein-biomarker interactions on a large scale to support the pharmaceutical industry and clinical research.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
Genetically encoded fluorescent biosensors (GEFBs) have become indispensable tools for visualizing biological processes A typical GEFB is composed of a sensory domain (SD) that undergoes a conformational change upon ligand binding or enzymatic reaction; the SD is genetically fused with a fluorescent protein (FP). The changes in the SD allosterically modulate the chromophore environment whose spectral properties are changed. Single fluorescent (FP)-based biosensors, a subclass of GEFBs, offer a simple experimental setup; they are easy to produce in living cells, structurally stable, and simple to use due to their single-wavelength operation.
View Article and Find Full Text PDFTalanta
December 2024
Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).
View Article and Find Full Text PDFSensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Rapid diagnosis of cerebrospinal fluid (CSF) leaks is critical as endoscopic endonasal skull base surgery gains global prominence. Current clinical methods such as endoscopic examination with and without intrathecal injection of fluorescent dye are invasive and rely on subjective judgment by physicians, highlighting the clinical need for label-free point-of-care (POC). However, a viable solution remains undeveloped due to the molecular complexity of CSF rhinorrhea mixed with nasal discharge and the scarcity of specific biomarkers, delaying sensor development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!