Highly selective, reusable electrochemical impedimetric DNA sensors based on carbon nanotube/polymer composite electrode without surface modification.

Biosens Bioelectron

Department of Nano Science and Technology, Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam, Gyeonggi 13120, Republic of Korea; Department of Nano-Physics, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam, Gyeonggi 13120, Republic of Korea; Gachon Bio-Nano Research Institute, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Gyeonggi 13120, Republic of Korea. Electronic address:

Published: October 2018

AI Article Synopsis

Article Abstract

We fabricated a composite of multi-walled carbon nanotube and polydimethylsiloxane and utilized it as an electrode for DNA sensing using electrochemical impedance spectroscopy. Without any surface modification or probe immobilization, often necessary for other electrodes, this electrode also acts as a recognition layer for DNA via π-π interactions between the multi-walled carbon nanotube and DNA. This electrode is easily reusable via a simple cleansing process, because there are no covalently bonded adsorbates on the electrode. Compared to previous DNA detection based on differential pulse voltammetry using a similar electrode, the measurement time was reduced from 1 h to less than 30 min, and the limit of detection (25 pM) was reduced by a factor of more than five. In addition, our system can detect the single-base mismatch between the target and probe. Our results indicate that electrochemical impedance spectroscopy is promising for utilizing the multi-walled carbon nanotube and polydimethylsiloxane electrode as a DNA sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.07.037DOI Listing

Publication Analysis

Top Keywords

multi-walled carbon
12
carbon nanotube
12
surface modification
8
nanotube polydimethylsiloxane
8
electrode dna
8
electrochemical impedance
8
impedance spectroscopy
8
electrode
7
dna
6
highly selective
4

Similar Publications

Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!