A novel three-dimensional heterojunction photocatalyst for the photocatalytic oxidation of crystal violet and reduction of Cr.

Chemosphere

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, China. Electronic address:

Published: November 2018

A novel 3-D heterojunction photocatalyst AgCO/BiVO was successfully fabricated. It exhibits excellent photocatalytic performances for the photocatalytic oxidation of crystal violet and reduction of Cr, which is ascribed to the suppression of charge recombination, and increasing lifetime of the charge carriers confirmed by the result of time-resolved fluorescence emission decay spectra and photoelectrochemical measures. The electron spin resonance result also suggests that heterojunction structure can improve separation efficiency of photogenerated carriers and favor to form •OH radicals. Moreover, ten intermediates and products for the photocatalytic oxidation degradation of crystal violet are identified by GC-MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.131DOI Listing

Publication Analysis

Top Keywords

photocatalytic oxidation
12
crystal violet
12
heterojunction photocatalyst
8
oxidation crystal
8
violet reduction
8
novel three-dimensional
4
three-dimensional heterojunction
4
photocatalytic
4
photocatalyst photocatalytic
4
reduction novel
4

Similar Publications

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.

View Article and Find Full Text PDF

Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO Nanowires.

Molecules

January 2025

College of Computer Science and Cyber Security (Pilot Software College), Chengdu University of Technology, Chengdu 610059, China.

The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO nanowires (TiO NWs) was performed. With metal loading, the electric and optical properties of TiO NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!