Enrichment analysis methods, e.g., gene set enrichment analysis, represent one class of important bioinformatical resources for mining patterns in biomedical datasets. However, tools for inferring patterns and rules of a list of drugs are limited. In this study, we developed a web-based tool, DrugPattern, for drug set enrichment analysis. We first collected and curated 7019 drug sets, including indications, adverse reactions, targets, pathways, etc. from public databases. For a list of interested drugs, DrugPattern then evaluates the significance of the enrichment of these drugs in each of the 7019 drug sets. To validate DrugPattern, we employed it for the prediction of the effects of oxidized low-density lipoprotein (oxLDL), a factor expected to be deleterious. We predicted that oxLDL has beneficial effects on some diseases, most of which were supported by evidence in the literature. Because DrugPattern predicted the potential beneficial effects of oxLDL in type 2 diabetes (T2D), animal experiments were then performed to further verify this prediction. As a result, the experimental evidences validated the DrugPattern prediction that oxLDL indeed has beneficial effects on T2D in the case of energy restriction. These data confirmed the prediction accuracy of our approach and revealed unexpected protective roles for oxLDL in various diseases. This study provides a tool to infer patterns and rules in biomedical datasets based on drug set enrichment analysis. DrugPattern is available at http://www.cuilab.cn/drugpattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2018.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!