Background: In previous studies, we have shown that the combination of metformin and gefitinib inhibits the growth of bladder cancer cells. Here we examined whether the metformin analogue phenformin, either used alone or in combination with gefitinib, could inhibit growth of bladder cancer cells.
Methods: The growth-inhibitory effects of phenformin and gefitinib were tested in one murine and two human bladder cancer cell lines using MTT and clonogenic assays. Effects on cell migration were assessed in a wound healing assay. Synergistic action between the two drugs was assessed using CompuSyn software. The potential involvement of AMPK and EGFR pathways in the effects of phenformin and gefitinib was explored using Western blotting.
Results: In MTT and clonogenic assays, phenformin was > 10-fold more potent than metformin in inhibiting bladder cancer cell growth. Phenformin also potently inhibited cell migration in wound healing assays, and promoted apoptosis. AMPK signaling was activated; EGFR signaling was inhibited. Phenformin was synergistic with gefitinib, with the combination of drugs showing much stronger anticancer activity and apoptotic activation than phenformin alone.
Conclusions: Phenformin shows potential as an effective drug against bladder cancer, either alone or in combination with gefitinib.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062982 | PMC |
http://dx.doi.org/10.1186/s40880-018-0319-7 | DOI Listing |
Front Immunol
January 2025
School of Nursing, Zunyi Medical University, Zunyi, China.
Background: Most patients initially diagnosed with non-muscle invasive bladder cancer (NMIBC) still have frequent recurrence after urethral bladder tumor electrodesiccation supplemented with intravesical instillation therapy, and their risk of recurrence is difficult to predict. Risk prediction models used to predict postoperative recurrence in patients with NMIBC have limitations, such as a limited number of included cases and a lack of validation. Therefore, there is an urgent need to develop new models to compensate for the shortcomings and potentially provide evidence for predicting postoperative recurrence in NMIBC patients.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.
View Article and Find Full Text PDFCharacterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
Heliyon
January 2025
Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan.
Bladder cancer ranks as the 9th most common type of cancer worldwide. Approximately 70 % of bladder cancers are diagnosed as non-muscle invasive, and they are treated with transurethral resection followed by intravesical therapy. Doxorubicin is one of the effective cytotoxic drugs used in intravesical and systemic therapy, but its cardiotoxicity and nephrotoxicity limit therapeutic dosages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!