AI Article Synopsis

Article Abstract

Background: Chagas Disease caused by Trypanosoma cruzi infection, is one of the most important neglected tropical diseases (NTD), without an effective therapy for the successful parasite eradication or for the blocking of the disease's progression, in its advanced stages. Due to their low toxicity, wide pharmacologic spectrum, and potential synergies, medicinal plants as Lippia alba, offer a promising reserve of bioactive molecules. The principal goal of this work is to characterize the inhibitory properties and cellular effects of the Citral and Carvone L. alba chemotype essential oils (EOs) and their main bioactive terpenes (and the synergies among them) on T. cruzi forms.

Methods: Twelve L. alba EOs, produced under diverse environmental conditions, were extracted by microwave assisted hydrodistillation, and chemically characterized using gas chromatography coupled mass spectrometry. Trypanocidal activity and cytotoxicity were determined for each oil, and their major compounds, on epimastigotes (Epi), trypomastigotes (Tryp), amastigotes (Amas), and Vero cells. Pharmacologic interactions were defined by a matrix of combinations among the most trypanocidal terpenes (limonene, carvone; citral and caryophyllene oxide). The treated cell phenotype was assessed by fluorescent and optic microscopy, flow cytometry, and DNA electrophoresis assays.

Results: The L. alba EOs displayed significant differences in their chemical composition and trypanocidal performance (p = 0.0001). Citral chemotype oils were more trypanocidal than Carvone EOs, with Inhibitory Concentration 50 (IC) of 14 ± 1.5 μg/mL, 22 ± 1.4 μg/mL and 74 ± 4.4 μg/mL, on Epi, Tryp and Amas, respectively. Limonene exhibited synergistic interaction with citral, caryophyllene oxide and Benznidazole (decreasing by 17 times its IC) and was the most effective and selective treatment. The cellular analysis suggested that these oils or their bioactive terpenes (citral, caryophyllene oxide and limonene) could be inducing T. cruzi cell death by an apoptotic-like mechanism.

Conclusions: EOs extracted from L. alba Citral chemotype demonstrated significant trypanocidal activity on the three forms of T. cruzi studied, and their composition and trypanocidal performance were influenced by production parameters. Citral, caryophyllene oxide, and limonene showed a possible induction of an apoptotic-like phenotype. The best selective anti-T. cruzi activity was achieved by limonene, the effects of which were also synergic with citral, caryophyllene oxide and benznidazole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062979PMC
http://dx.doi.org/10.1186/s12906-018-2293-7DOI Listing

Publication Analysis

Top Keywords

caryophyllene oxide
24
citral caryophyllene
20
citral
9
cell death
8
trypanosoma cruzi
8
lippia alba
8
essential oils
8
terpenes citral
8
bioactive terpenes
8
alba eos
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!