Biofilms are a typical mode of growth for most microorganisms and provide them with a variety of survival benefits. Biofilms can pose medical and industrial challenges due to their increased tolerance of antimicrobials and disinfectants. Exposure of bacteria to subinhibitory concentrations of those compounds can further exacerbate the problem, as they provoke physiological changes that lead to increased biofilm production and potential therapeutic failure. The protected niche of a biofilm provides conditions that promote selection for persisters and resistant mutants. In this review we discuss our current understanding of the mechanisms underlying biofilm stimulation in response to subinhibitory antimicrobials, and how we might exploit this 'anti-antibiotic' phenotype to treat biofilm-related infections and discover new compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mib.2018.07.006 | DOI Listing |
Mater Today Bio
February 2025
Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.
Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!