Rapid and nondestructive near infrared spectroscopy (NIR) methods have been developed for simultaneous qualitative and quantitative analysis of methamphetamine, ketamine, heroin, and cocaine in seized samples. This is the first systematic report regarding a qualitative and quantitative procedure of applying NIR for drug analysis. A total of 282 calibration samples and 836 prediction samples were used for the building and validating of qualitative and quantitative models. Two qualitative analysis modeling methods for soft independent modeling by class analogy (SIMCA) and supporting vector machine (SVM) were compared. From its excellent performance in rejecting false positive results, SIMCA was chosen. The drug concentrations in the calibration and validation sample sets were analyzed using high-performance liquid chromatography. Based on the use of first-order derivative spectral data after standard normal variate (SNV) transformation correction, in the wavelength range from 10,000 to 4000cm, four partial least squares quantitative-analysis models were built. The coefficients of determination for all calibration models were >99.3, and the RMSEC, RMSECV, and RMSEP were all less than 1.6, 2.9, and 3.6%, respectively. The results obtained here indicated that NIR with chemometric methods was accurate for qualitative and quantitative analysis of drug samples. This methodology provided a potentially useful alternative to time-consuming gas chromatography-mass spectroscopy and high-performance liquid chromatography methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2018.07.008DOI Listing

Publication Analysis

Top Keywords

qualitative quantitative
20
quantitative analysis
12
analysis methamphetamine
8
methamphetamine ketamine
8
ketamine heroin
8
heroin cocaine
8
high-performance liquid
8
liquid chromatography
8
quantitative
5
analysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!