Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a novel type of mesophilic anaerobic bioreactor-an expanded granular sludge bed (EGSB)-was utilized to explore the effect of suspending reactor operation on the treatment performance and the microbial community structure. The parameters of performance and bacterial community before and after a four-week suspension were compared for the starch processing wastewater treatment bioreactor. The results indicate that the removal rate of the organic matter remained higher than 90%, although the biomass significantly decreased after restarting the reactor. However, the relatively stable microbial community structure before the suspension was altered significantly during the restart and post-running stages. This change was primarily due to variability in satellite species and the substitution effect of different dominant bacteria. For example, some non-major carbohydrate-degrading bacteria that were sensitive to nutrition deficiency, such as Desulfovibrio and Geobacter, were dramatically reduced after the suspension. In contrast, the stress of starvation stimulated the reproduction of hydrolytic bacteria, such as Macellibacteroides. However, the high bacterial diversity index (6.12-6.65) and the longstanding core species, including Chloroflexi, Cloacimonetes, Ignavibacteriae, Thermotogae and Euryarchaeota, maintained the functional stability of the reactor. Consequently, although the total bacteria decreased significantly after reactor operation was suspended, sufficient functional bacteria supported by the high diversity, as well as the longstanding core species, guaranteed the effective degradation after suspension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.07.309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!