Immunotherapy has revolutionized the treatment of cancer. Since tumor cells exhibit low immunogenicity and can induce several mechanisms of tolerance, the use of monoclonal antibodies or other immunomodulators, targeting costimulation of T cells may mediate the inhibition of immunosuppressive mechanisms, favouring immune surveillance and enhancing the detection and elimination of tumor cells. We developed a new in vitro assay, based on flow cytometry, which allows exploring the therapeutic potential of tumor-derived immunomodulatory lineages, enhancing anti-tumor response. We generated tumor-derived cells that simultaneously co-express eGFP and one immunomodulatory molecule (OX40L, 4-1BBL or GM-CSF). These genetically modified tumor-derived cells are irradiated and then incubated with primary T cells to evaluate the killing activity, which can be estimated by a decrease in the eGFP positive cells. The results have shown correlation with in vivo experiments. This model may contribute to the development of high-throughput assays for the screening of immunomodulators and a reduction in the use of experimental animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2018.07.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!