In nature, enzymatic reaction cascades, i.e., realized in metabolic networks, operate with unprecedented efficacy, with the reactions often being spatially and temporally orchestrated. The principle of "learning from nature" has in recent years inspired the setup of synthetic reaction cascades combining biocatalytic reaction steps to artificial cascades. Hereby, the spatial organization of multiple enzymes, e.g., by coimmobilization, remains a challenging task, as currently no generic principles are available that work for every enzyme. We here present a tunable, genetically programmed coimmobilization strategy that relies on the fusion of a coiled-coil domain as aggregation inducing-tag, resulting in the formation of catalytically active inclusion body coimmobilizates (Co-CatIBs). Coexpression and coimmobilization was proven using two fluorescent proteins, and the strategy was subsequently extended to two enzymes, which enabled the realization of an integrated enzymatic two-step cascade for the production of (1 R,2 R)-1-phenylpropane-1,2-diol (PPD), a precursor of the calicum channel blocker diltiazem. In particular, the easy production and preparation of Co-CatIBs, readily yielding a biologically produced enzyme immobilizate renders the here presented strategy an interesting alternative to existing cascade immobilization techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.8b00274 | DOI Listing |
Nat Chem Biol
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.
View Article and Find Full Text PDFSynthesis of complex, multiring, spirocyclic, 1,3-dicarbonyl fused, and highly functionalized 5-phenyl-1-azabicyclo[3.1.0]hexanes (ABCH) has been achieved by an intermolecular reaction of 2-(2'-ketoalkyl)-1,3-indandiones or α,γ-diketo esters with (1-azidovinyl)benzenes under transition metal-free conditions.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States.
The glucocorticoid receptor (GR) is present in almost every vertebrate cell and is utilized in many biological processes. Despite an abundance of mammalian data, the structural conservation of the receptor and cross-species susceptibility, particularly for aquatic species, has not been well defined. Efforts to reduce, refine, and/or replace animal testing have increased, driving the impetus to advance development of new approach methodologies (NAMs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.
Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong University, Department of Chemistry, 27 South Shanda Road, 250100, Jinan, CHINA.
Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!