Mammalian dendritic regrowth: a new perspective on neural repair.

Brain

Boston Children's Hospital, Harvard Medical School, Department of Neurosurgery, Boston, Massachusetts, USA.

Published: July 2018

This scientific commentary refers to ‘Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury’, by Agostinone . (doi:10.1093/brain/awy142).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658712PMC
http://dx.doi.org/10.1093/brain/awy165DOI Listing

Publication Analysis

Top Keywords

mammalian dendritic
4
dendritic regrowth
4
regrowth perspective
4
perspective neural
4
neural repair
4
repair scientific
4
scientific commentary
4
commentary refers
4
refers ‘insulin
4
‘insulin signalling
4

Similar Publications

Background/aim: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematologic cancer which is difficult to diagnose and has a lot of overlapping features with other diseases, particularly acute myeloid leukemia (AML). BPDCN shares several immunophenotypic markers with AML, such as CD4, CD56, CD123, and HLA-DR, stating the importance of having extending panel of specific immunohistochemical (IHC) markers.

Case Report: This report details a case of CLL who presented with worsening symptoms of recurrent infections and leukocytosis.

View Article and Find Full Text PDF

Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus.

J Mol Histol

December 2024

Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.

The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells.

View Article and Find Full Text PDF

The aim of this study is to screen key target genes of osteoarthritis associated with aging and to preliminarily explore the associated immune infiltration cells and potential drugs. Differentially expressed senescence-related genes (DESRGs) selected from Cellular senescence-related genes (SRGs) and differentially expressed genes (DEGs) were analyzed using Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interaction networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (CSCC) is a malignant skin tumor characterized by the abnormal proliferation of keratinocytes. Immune cells have a very important role in the development of CSCC. Hence, it was vital to screen the immune cell-related biomarkers for the treatment of CSCC.

View Article and Find Full Text PDF

An unstable variant of GAP43 leads to neurodevelopmental deficiency.

Sci Rep

December 2024

Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.

Growth-associated protein 43 (GAP43) is a membrane-associated phosphoprotein predominantly expressed in the nervous systems, and controls axonal growth, branching, and pathfinding. While the association between GAP43 and human neurological disorders have been reported, the underlying mechanisms remain largely unknown. We performed whole exome sequencing on a patient with intellectual disability (ID), neurodevelopmental disorders, short stature, and skeletal abnormalities such as left-right difference in legs and digital deformities, and identified a heterozygous missense variation in the GAP43 gene [NM_001130064.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!