Tiller number and plant height are two of the main features of plant architecture that directly influence rice yield. Auxin and miR156, an extensively studied small RNA (smRNA), are both broadly involved in plant development and physiology, suggesting a possible relationship between the two. In this study, we identified a rice T-DNA insertion cluster and dwarf (cd) mutant that has an increased tiller number and reduced plant height. The T-DNA insertion was in close proximity to the miR156f gene and was associated with its up-regulation. Plants overexpressing miR156f resembled the cd mutant. In contrast, plants overexpressing an miR156f target mimic (MIM156fOE) had a reduced tiller number and increased height. Genetic analysis showed that OsSPL7 is a target of miR156f that regulates plant architecture. Plants overexpressing OsSPL7 had a reduced tiller number, while OsSPL7 RNAi plants had an increased tiller number and a reduced height. We also found that OsSPL7 binds directly to the OsGH3.8 promoter to regulate its transcription. Overexpression of OsGH3.8 and OsGH3.8 RNAi partially complemented the MIM156fOE and cd mutant phenotypes, respectively. Our combined data show that the miR156f-OsSPL7-OsGH3.8 pathway regulates tiller number and plant height in rice, and this pathway may allow crosstalk between miR156 and auxin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184515 | PMC |
http://dx.doi.org/10.1093/jxb/ery273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!