Resting human T-lymphocytes show an elevated intracellular concentration of ferritin, whereas transferrin receptors are not detectable. Stimulation by phytohemagglutinin markedly lowers their ferritin content, while inducing the synthesis of transferrin receptors. Addition of iron salts (ferric ammonium citrate) in activated T-lymphocyte cultures causes a marked enhancement of both [3H]uridine and [3H]thymidine incorporation. Nevertheless, it also induces a concentration-dependent decrease in transferrin receptor synthesis, associated with a marked rise of ferritin production. Hemin treatment exerts the same effects. Addition of picolinic acid in phytohemagglutinin-stimulated cultures causes a decrease of [3H]thymidine incorporation, whereas transferrin expression is markedly enhanced. The action of iron salts and chelators is specific for transferrin receptors, since the expression of other membrane markers of activated human T-lymphocytes (interleukin-2 receptor, insulin receptor, and HLA-DR antigen) is not modified by treatment with iron or picolinic acid. These observations suggest that expression of transferrin receptors in activated T-lymphocytes is specifically modulated by their intracellular iron level, rather than their proliferative rate. Addition of picolinic acid to resting T-lymphocytes in the absence of mitogen induces a marked decrease of their ferritin content, but not the appearance of transferrin receptors. On the basis of these results, we suggest a three-step model: (a) in resting T-lymphocytes, the gene for transferrin receptor is apparently "closed," in that it is not expressed under both normal conditions and following iron deprivation. (b) After mitogen stimulus, T-lymphocytes are reprogrammed into cell cycle progression, which necessarily entails synthesis of transferrin receptors (c) Expression of these receptors is modulated by the intracellular iron level, rather than the rate of proliferation per se.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Department of Pharmacy, Uppsala University, Uppsala, Sweden.
Transferrin Receptor (TfR)-mediated transcytosis across the blood-brain barrier (BBB) enables the uptake of bispecific therapeutic antibodies into the brain. At therapeutically relevant concentrations, bivalent binding to TfR appears to reduce the transcytosis efficiency by receptor crosslinking. In this study, we aimed to improve BBB transcytosis of symmetric antibodies through minimizing their ability to cause TfR crosslinking.
View Article and Find Full Text PDFCell Death Dis
December 2024
Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Intestinal cell death is a defining feature of Crohn's disease (CD), a major form of inflammatory bowel disease. The focus on this aspect of enteric inflammation has mainly been on epithelial cells, while other cell types such as stromal and myeloid cells have received less attention. Hypothesising that decreased macrophage viability in an oxidative environment could be a contributing factor to the pathophysiology of CD, we found that monocyte-derived macrophages from individuals with active CD (but not those in clinical disease remission) have increased sensitivity to cell death induced by HO.
View Article and Find Full Text PDFNano Lett
December 2024
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China.
Although traditionally regarded as an impediment, the protein corona can facilitate the advancement of targeted drug delivery systems. This study presents an innovative approach for targeting acute myeloid leukemia (AML) using nanoparticles with agglutinated protein (NAPs). Agglutinated transferrin and C3b in NAPs selectively bind to CD71 and CD11b, receptors that are overexpressed on myeloid leukemic cells compared to nonmalignant cells.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria.
Cells
November 2024
Institute of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria.
The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!