Pressure overload of the heart leads to cardiac remodeling that may progress into heart failure, a common, morbid and mortal condition. Increased mechanistic insight into remodeling is instrumental for development of novel heart failure treatment. Cardiac remodeling comprises cardiomyocyte hypertrophic growth, extracellular matrix alterations including fibrosis, and inflammation. Fibromodulin is a small leucine-rich proteoglycan that regulates collagen fibrillogenesis. Fibromodulin is expressed in the cardiac extracellular matrix, however its role in the heart remains largely unknown. We investigated fibromodulin levels in myocardial biopsies from heart failure patients and mice, subjected fibromodulin knock-out (FMOD-KO) mice to pressure overload by aortic banding, and overexpressed fibromodulin in cultured cardiomyocytes and cardiac fibroblasts using adenovirus. Fibromodulin was 3-10-fold upregulated in hearts of heart failure patients and mice. Both cardiomyocytes and cardiac fibroblasts expressed fibromodulin, and its expression was increased by pro-inflammatory stimuli. Without stress, FMOD-KO mice showed no cardiac phenotype. Upon aortic banding, left ventricles of FMOD-KO mice developed mildly exacerbated hypertrophic remodeling compared to wild-type mice, with increased cardiomyocyte size and altered infiltration of leukocytes. There were no differences in mortality, left ventricle dilatation, dysfunction or expression of heart failure markers. Although collagen amount and cross-linking were comparable in FMOD-KO and wild-type, overexpression of fibromodulin in cardiac fibroblasts in vitro decreased their migratory capacity and expression of fibrosis-associated molecules, i.e. the collagen-cross linking enzyme lysyl oxidase, transglutaminase 2 and periostin. In conclusion, despite a robust fibromodulin upregulation in clinical and experimental heart failure, FMOD-KO mice showed a relatively mild hypertrophic phenotype. In cultured cardiac fibroblasts, fibromodulin has anti-fibrotic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063439PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201422PLOS

Publication Analysis

Top Keywords

heart failure
28
fmod-ko mice
16
cardiac fibroblasts
16
extracellular matrix
12
cardiac remodeling
12
fibromodulin
11
heart
9
cardiac
9
clinical experimental
8
experimental heart
8

Similar Publications

Aims: To investigate the distribution of left atrioventricular coupling index (LACI) among patients with heart failure and left ventricular ejection fraction (LVEF)<50% and to explore its association with the combined endpoint of all-cause death or HF hospitalization at long term follow-up.

Methods And Results: Patients with HF and LVEF<50% undergoing cardiac magnetic resonance (CMR) were evaluated. Patients with atrial fibrillation or flutter were excluded.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Rationale: Thrombotic microangiopathies (TMA) caused by malignant hypertension is an acute and critical disease among rare diseases. Although renal biopsy pathology is a golden indicator for diagnosing kidney disease, it cannot distinguish between primary and secondary TMA and requires a comprehensive diagnosis in conjunction with other laboratory tests and medical history.

Patient Concerns: A 33-year-old young man was hospitalized due to unexplained kidney failure.

View Article and Find Full Text PDF

This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!