The surface chemistry and adsorption behavior of submicrometer cellulosic and lignin particles have drawn wide-ranging interest in the scientific community. Here, we introduce their assembly at fluid/fluid interfaces in Pickering systems and discuss their role in reducing the oil/water interfacial tension, limiting flocculation and coalescence, and endowing given functional properties. We discuss the stabilization of multiphase systems by cellulosic and lignin colloids and the opportunities for their adoption. They can be used alone, as dual components, or in combination with amphiphilic molecules for the design of multiphase systems relevant to household products, paints, coatings, pharmaceutical, foodstuff, and cosmetic formulations. This invited feature article summarizes some of our work and that of colleagues to introduce the readers to this fascinating and topical area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344914 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.8b01288 | DOI Listing |
Molecules
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Food Engineering-FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain.
Almond shells (ASs) are a potential source of cellulose that could be obtained through sustainable methods for their valorisation. Biocomposites (BCs) from polyvinyl alcohol (PVA) and cellulose are interesting materials for developing sustainable packaging materials. BC based on PVA and AS cellulose were obtained by melt blending and compression moulding, by using subcritical water extraction at 160 or 180 °C, and subsequent bleaching with sodium chlorite (C) or hydrogen peroxide (P) to purify cellulose.
View Article and Find Full Text PDFBiology (Basel)
January 2025
National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China. Electronic address:
The continuous progression of industrialisation and the burgeoning global population have precipitated the non-renewable energy crisis and exacerbated environmental problems, thereby stimulating a huge demand for production of environmentally friendly materials. Typically, biomass-based aerogels (BAs) derived from cellulose, chitosan (CS), lignin, and alginate have been gradually captivating the attention of researchers owing to their high specific surface area, substantial porosity, low density, porous architecture, and biodegradability. In this review, we demonstrate the sustainability of BAs by contrasting the overall advantages or disadvantages of BAs with those of synthetic alternatives in terms of cost, insulation performance, and planetary boundaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!