The new hybrid flocculant polyaluminum chloride-poly (dimethyl diallyl ammonium chloride) (PAC-PDMDAAC) was used to treat disperse violet and reactive brilliant red dye wastewater. The experimental results indicated that the decolorization effect of hybrid PAC-PDMDAAC was better than that of PAC and composite PAC-PDMDAAC. The decolorization rates of disperse violet and reactive brilliant red dye wastewater were 99% and 86.8% respectively when the dosages of hybrid flocculant were 400 and 450 mg·L-1. When the pH of disperse violet wastewater was 7~12, the hybrid flocculant had the best decolorization effect. When the pH of reactive brilliant red wastewater was 7~9, the hybrid flocculant had the best decolorization effect. Each of the two dyes and their flocs were characterized with FTIR. Results showed that the hybrid flocculant had a complex reaction with the dye wastewater, and the main decolorization mechanism was charge neutralization and adsorption bridging capacity. The UV scanning results indicated an adsorption peaks shift and an absorbance decreases, which further explained the main mechanism above. At the same time, it also indicated the ether linkage and —NH2 of disperse violet were destroyed and replaced by hybrid flocculant, and the -SO3 , Cl- of reactive brilliant red were also replaced. The study will provide a new method in decolorization effiency and decolorization mechanism for the new inorganic-organic hybrid polymer flocculant. And it has significant practical meaning and application value.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hybrid flocculant
24
disperse violet
16
reactive brilliant
16
brilliant red
16
dye wastewater
12
hybrid
9
decolorization
8
violet reactive
8
red dye
8
flocculant best
8

Similar Publications

[MED15-TFE3 renal cell carcinoma: a clinicopathological and molecular analysis].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing210002, China.

To investigate the clinicopathological features, immunophenotype, molecular characteristics, and differential diagnosis of MED15-TFE3 gene fusion renal cell carcinoma (MED15-TFE3 RCC). A total of 12 MED15-TFE3 RCCs, diagnosed from 2016 to 2023, were collected from the Department of Pathology of Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China for clinicopathologic, immunohistochemical, fluorescence in situ hybridization (FISH) and RNA sequencing (RNA-seq) analyses and follow-up. In addition, its diagnosis and differential diagnosis were also explored.

View Article and Find Full Text PDF

In order to solve the shortcomings of a single flocculant, the inorganic-organic hybrid flocculant SiO-CTS-DMDACC was successfully prepared by grafting copolymerization of chitosan (CTS), dimethyl diallyl ammonium chloride (DMDACC), and silicon dioxide (SiO). The performance of SiO-CTS-DMDACC in treating papermaking wastewater was investigated, and the mechanism of the flocculation process was analyzed. The results showed that the crystallinity of chitosan was reduced due to the introduction of DMDACC and SiO.

View Article and Find Full Text PDF

Performance improvement of triple-doped nanocomposite membrane towards hairwork dyeing effluent reclamation approaching zero liquid discharge.

Chemosphere

November 2024

Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China. Electronic address:

It is highly anticipated that efforts will be made to raise the level of industrial effluent reclamation on the background of continuously minimizing waste stream based on preconcentration tool. For this purpose, a triple-doped nanocomposite (TFN-tri) membrane through partially alternative doping spiro-structured 2,2'-dimethyl-1,1'-biphenyl-4,4'-diamine dihydrochloride and flexible 4,4'-bipiperidyl dihydrochloride and continuous incorporating of molybdenum disulfide quantum dots was successfully fabricated. With the assistance of self-synthesized biodegradable flocculant pretreatment, raw hairwork dyeing effluent (HDE) was stably recycled up to 95.

View Article and Find Full Text PDF

Integrated processes for olive mill wastewater treatment and its revalorization for microalgae culture.

Int Microbiol

October 2024

Laboratory of Plant Biotechnologies Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, 3038, Sfax, Tunisia.

The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs.

View Article and Find Full Text PDF

New hybrid hydrogel composites based on a mixture of natural polysaccharides (sodium alginate, κ-carrageenan, and chitosan) filled with the clay mineral of natural origin, montmorillonite (MMT), were studied. The structure of intercalated/flocculated MMT distribution in the interpenetrating network of polysaccharide matrix was characterized using FTIR, X-ray diffraction, and SEM techniques. Swelling kinetics was investigated using the weight analysis, whereas the phase transition of water in the composition of hybrid hydrogels, by DSC method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!