Thermal management at solid interfaces presents a technological challenge for modern thermoelectric power generation. Here, we define a computational protocol to identify nanoscale structural features that can facilitate thermal transport in technologically important nanostructured materials. We consider the highly promising thermoelectric material, SrTiO3, where tilt grain boundaries lower thermal conductivity. The magnitude of the reduction is shown to depend on compositional and structural arrangements at the solid interface. Quantitative analysis indicates that layered nanostructures less than 10 nm will be required to significantly reduce the thermal conductivity below the bulk value, and it will be virtually independent of temperature for films less than 2 nm depending on the orientation with a reduction of thermal transport up to 75%. At the nanoscale, the vibrational response of nanostructures shows concerted vibrations between the grain boundary and inter-boundary regions. As the grain boundary acts markedly as a phonon quencher, we predict that any manipulation of nanostructures to further reduce thermal conductivity will be more beneficial if applied to the inter-boundary region. Our findings may be applied more widely to benefit other technological applications where efficient thermal transport is important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr02234h | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemical Engineering, University College London (UCL), London, WC1E 7JE, UK.
Hydrogen energy will play a dominant role in energy transition from fossil fuel to low carbon processes, while economical, efficient, and safe hydrogen storage and transportation technology has become one of the main bottlenecks that currently hinder the application of the hydrogen energy scale. Methanol has widely been regarded as a primary liquid H storage medium due to its high hydrogen content, easy storage and transportation and relatively low toxicity. Hydrogen release from methanol using photocatalysis has thus been the focus of intense research and recent years have witnessed its fast progress and drawbacks.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
2D perovskite has demonstrated great potential for application in photovoltaic devices due to the tunable energy bands, suppressed ion migration, and high stability. However, 2D perovskite solar cells (PSCs) display suboptimal efficiency in comparison to 3D perovskite solar cells, which can be attributed to the quantum confinement and dielectric confinement effects resulting from the intercalation of organic spacer cations into the perovskite lattice. This review starts with the fundamental structural characteristics, optoelectronic properties, and carrier transport dynamics of 2D PSCs, followed by the discussion of approaches to improve the photovoltaic performance of 2D PSCs, including the manipulation of crystal orientation, phase distribution, pure phase, organic layer, and device engineering.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Institut Parisien de Chimie Moléculaire, Chimie des Polymères, UMR CNRS 8232, Sorbonne Université, 4 place Jussieu, Paris 75005, France.
We have examined the structural and electron transport properties of a swallow-tailed ,'-bis(1-heptyloctyl)-perylene-3,4:9,10-bis(dicarboximide) () in thin films. A comprehensive analysis of material with the use of X-ray scattering methods evidenced the appearance of a new soft-crystalline mesophase that was induced by thermal processing of the swallow-tail PDI derivative. By combining electrical measurements with grazing-incidence wide-angle X-ray scattering (GIWAXS), we show that these morphological changes of thin films boost their charge transport in the organic field-effect transistor (OFET) configuration.
View Article and Find Full Text PDFJ Therm Biol
December 2024
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA; Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, 85287, USA. Electronic address:
As global temperatures rise due to climate change, the frequency and intensity of heatwaves are increasing, posing significant threats to human health, productivity, and well-being. Thermoregulation models are important tools for quantifying the risk of extreme heat, providing insights into physiological strain indicators such as core and skin temperatures, sweat rates, and thermal comfort levels. This study evaluated four thermoregulation models of varying complexity, differentiated by the geometry and underlying thermoregulatory mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Engineering, Marwadi University, Rajkot, 360003, India.
The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!