Purpose: Streptococcus pyogenes, a notorious human pathogen thatis responsible for various invasive and non-invasive diseases, possesses multiple virulence armaments, including biofilm formation. The current study demonstrates the anti-biofilm and anti-virulence potential of fukugiside, a biflavonoid isolated from Garciniatravancorica, against S. pyogenes.
Methodology: The anti-biofilm activity of fukugiside was assessed and established using microdilution and microscopic analysis. Biochemical assays were performed to assess the effects of fukugiside on important virulence factors, which were further validated using quantitative real-time PCR and in vivo analysis in Caenorhabditis elegans.
Results: Fukugiside exhibited concentration-dependent biofilm inhibition (79 to 96 %) against multiple M serotypes of S. pyogenes (M1, M56, M65, M74, M100 and st38) with a minimum biofilm inhibitory concentration of 80 µg ml. Electron microscopy and biochemical assay revealed a significant reduction in extracellular polymeric substance production. The results for the microbial adhesion to hydrocarbon assay, extracellular protease quantification and differential regulation of the dltA, speB, srv and ropB genes suggested that fukugiside probably inhibits biofilm formation by lowering cell surface hydrophobicity and destabilizing the biofilm matrix. The enhanced susceptibility to phagocytosis evidenced in the blood survival assay goes in unison with the downregulation of mga. The downregulation of important virulence factor-encoding genes such as hasA, slo and col370 suggested impaired virulence. In vivo analysis in C. elegans evinced the non-toxic nature of fukugiside and its anti-virulence potential against S. pyogenes.
Conclusion: Fukugiside exhibits potent anti-biofilm and anti-virulence activity against different M serotypes of S. pyogenes. It is also non-toxic, which augurs well for its clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jmm.0.000799 | DOI Listing |
Wounds
December 2024
MediWound, Ltd, Yavne, Israel.
Background: Chronic hard-to-heal wounds, such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers, present significant safety concerns, patient burdens, and challenges to health care systems globally.
Objective: To review the mechanism of action and clinical function of bromelain-based enzymatic debridement (BBD) in the context of wound care, focusing on the mechanism of action of BBD and its formulation for chronic wounds in particular.
Methods: A literature review was conducted to assess both bromelain's mechanism of action as well as clinical and preclinical studies on the use of BBD, searching the PubMed and Google Scholar databases for articles published between November 1992 and July 2024.
PLoS One
January 2025
Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
Biliary stent occlusion is due, in part, to biofilm formation by bacteria. However, previous culture-based approaches may not have revealed all microorganisms on the surface. Twenty-seven patients underwent endoscopic retrograde biliary drainage for the removal or replacement of plastic biliary stents.
View Article and Find Full Text PDFInt J Food Sci
December 2024
School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK.
Understanding biofilm rheology is crucial for industrial and domestic food safety practices. This comprehensive review addresses the knowledge gap on the rheology of biofilm. Specifically, the review explores the influence of fluid flow, shear stress, and substrate properties on the initiation, structure, and functionality of biofilms, as essential implications for food safety.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Background: Oral infectious diseases, such as dental caries, periodontitis and periapical periodontitis, are often complicated by causative bacterial biofilm formation and significantly impact human oral health and quality of life. Bacteriophage (phage) therapy has emerged as a potential alternative with successful applications in antimicrobial trials. While therapeutic use of phages has been considered as effective treatment of some infectious diseases, related research focusing on oral infectious diseases is few and lacks attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!