Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India.

Environ Sci Technol

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water , 8600 Dübendorf , Switzerland.

Published: September 2018

For about the past eight decades, high concentrations of naturally occurring fluoride have been detected in groundwater in different parts of India. The chronic consumption of fluoride in high concentrations is recognized to cause dental and skeletal fluorosis. We have used the random forest machine-learning algorithm to model a data set of 12 600 groundwater fluoride concentrations from throughout India along with spatially continuous predictor variables of predominantly geology, climate, and soil parameters. Despite only surface parameters being available to describe a subsurface phenomenon, this has produced a highly accurate prediction map of fluoride concentrations exceeding 1.5 mg/L at 1 km resolution throughout the country. The most affected areas are the northwestern states/territories of Delhi, Gujarat, Haryana, Punjab, and Rajasthan and the southern states of Andhra Pradesh, Karnataka, Tamil Nadu, and Telangana. The total number of people at risk of fluorosis due to fluoride in groundwater is predicted to be around 120 million, or 9% of the population. This number is based on rural populations and accounts for average rates of groundwater consumption from nonmanaged sources. The new fluoride hazard and risk maps can be used by authorities in conjunction with detailed groundwater utilization information to prioritize areas in need of mitigation measures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b01679DOI Listing

Publication Analysis

Top Keywords

groundwater fluoride
8
high concentrations
8
fluoride concentrations
8
fluoride
7
groundwater
6
prediction modeling
4
modeling mapping
4
mapping groundwater
4
fluoride contamination
4
contamination india
4

Similar Publications

Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae.

Environ Toxicol

January 2025

Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.

The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.

View Article and Find Full Text PDF

Improving groundwater vulnerability assessment using machine learning.

J Environ Sci (China)

July 2025

Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada. Electronic address:

View Article and Find Full Text PDF

Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.

View Article and Find Full Text PDF

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

A comprehensive analysis of the impact of arsenic, fluoride, and nitrate-nitrite dynamics on groundwater quality and its health implications.

J Hazard Mater

January 2025

Third World Center (TWC) for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Groundwater contamination is a growing global concern. The objective of the present study is to assess the groundwater quality of Khairpur district, Sindh, Pakistan-a region which is emblematic of broad environmental and public health challenges prevalent in South Asian countries. The study also aims to comprehend the impact of arsenic (As), fluoride (F), and nitrate (NO) dynamics and its health implications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!