A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. | LitMetric

Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films.

Biomacromolecules

Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22 , Terrassa 08222 , Spain.

Published: September 2018

In this study, freestanding nanobiocomposite films were obtained by the sequential deposition of biopolymer-capped silver nanoparticles (AgNPs) and hyaluronic acid (HA). At first, dispersions of AgNPs decorated with chitosan (CS) or aminocellulose (AC) were synthesized by applying high intensity ultrasound. These polycationic nanoentities were layer-by-layer assembled with the HA polyanion to generate stable 3D supramolecular constructs, where the biopolymer-capped AgNPs play the dual role of active agent and structural element. SEM images of the assemblies revealed gradual increase of thickness with the number of deposited bilayers. The composites of ≥50 bilayers were safe to human cells and demonstrated 100% antibacterial activity against Staphylococcus aureus and Escherichia coli. Moreover, the films containing CSAgNPs brought about the total prevention of biofilm formation reducing the cells surface adherence by up to 6 logs. Such nanobiocomposites could serve as an effective barrier to control bacterial growth on injured skin, burns, and chronic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.8b00626DOI Listing

Publication Analysis

Top Keywords

freestanding nanobiocomposite
8
nanobiocomposite films
8
bottom-up layer-by-layer
4
layer-by-layer assembling
4
assembling antibacterial
4
antibacterial freestanding
4
films study
4
study freestanding
4
films sequential
4
sequential deposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!