Microglia have a more extensive and divergent response to interferon-α compared with astrocytes.

Glia

The University of Sydney, School of Molecular Bioscience, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre, and the Bosch Institute, Sydney, Australia.

Published: October 2018

Type I interferons (IFN-I) are crucial for effective antimicrobial defense in the central nervous system (CNS) but also can cause severe neurological disease (termed cerebral interferonopathy) as exemplified by Aicardi-Goutières Syndrome. In the CNS, microglia and astrocytes have essential roles in host responses to infection and injury, with both cell types responding to IFN-I. While the IFN-I signaling pathways are the same in astrocytes and microglia, the extent to which the IFN-I responses of these cells differ, if at all, is unknown. Here we determined the global transcriptional responses of astrocytes and microglia to the IFN-I, IFN-α. We found that under basal conditions, each cell type has a unique gene expression pattern reflective of its developmental origin and biological function. Following stimulation with IFN-α, astrocytes and microglia also displayed a common core response that was characterized by the increased expression of genes required for pathogen detection and elimination. Compared with astrocytes, microglia had a more extensive and diverse response to IFN-α with significantly more genes with expression upregulated (282 vs. 141) and downregulated (81 vs. 3). Further validation was documented for selected IFN-I-regulated genes in a murine model of cerebral interferonopathy. In all, the findings highlight not only overlapping but importantly divergent responses to IFN-I by astrocytes versus microglia. This suggests specialized roles for these cells in host defense and in the development of cerebral interferonopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23460DOI Listing

Publication Analysis

Top Keywords

astrocytes microglia
16
cerebral interferonopathy
12
microglia extensive
8
compared astrocytes
8
microglia
7
astrocytes
7
ifn-i
6
extensive divergent
4
divergent response
4
response interferon-α
4

Similar Publications

Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice.

Acta Pharm Sin B

December 2024

Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.

View Article and Find Full Text PDF

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.

Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.

View Article and Find Full Text PDF

C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats.

CNS Neurosci Ther

January 2025

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!