Auxetic materials, characterised by a negative Poisson's ratio, have properties that are different from most conventional materials. These are a result of the constraints on the kinematics of the material's basic structural components, and have important technological implications. Models of these materials have been studied extensively, but theoretical descriptions have remained largely limited to materials with an ordered microstructure. Here we investigate whether negative Poisson's ratios can arise spontaneously in disordered systems. To this end, we develop a quantitative description of the structure in systems of connected basic elements, which enables us to analyse the local and global responses to small external tensile forces. We find that the Poisson's ratios in these disordered systems are equally likely to be positive or negative on both the element and system scales. Separating the strain into translational, rotational and expansive components, we find that the translational strains of neighbouring basic structural elements are positively correlated, while their rotations are negatively correlated. There is no correlation in this type of system between the local auxeticity and local structural characteristics. Our results suggest that auxeticity is more common in disordered structures than the ubiquity of positive Poisson's ratios in macroscopic materials would suggest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088373 | PMC |
http://dx.doi.org/10.1039/c8sm00717a | DOI Listing |
Materials (Basel)
January 2025
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310007, China.
The hygrothermal aging model, based on Fick's second law of diffusion, characterizes the degradation of engineering constants in T700 carbon fiber/epoxy resin composites. It focuses on changes in the tensile modulus, shear modulus, and transverse Poisson's ratio due to moisture absorption and temperature variations. The model validates through mass change observations before and after seawater immersion, along with surface morphology assessments and tensile experiments.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA.
The present work investigates the interfacial and atomic layer-dependent mechanical properties, SOC-entailing phonon band structure, and comprehensive electron-topological-elastic integration of ZrTe and NiTe. The anisotropy of Young's modulus, Poisson's ratio, and shear modulus are analyzed using density functional theory with the TB-mBJ approximation. NiTe has higher mechanical property values and greater anisotropy than ZrTe.
View Article and Find Full Text PDFData Brief
February 2025
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France.
Silicate glasses are commonly used for many important industrial applications. As such, the literature provides a wealth of different structural, physical, thermodynamic and mechanical properties for many different chemical compositions of oxide glasses. However, a frequent limitation to existing datasets is that only one or two material properties can be evaluated for a given sample.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Department of Fundamental Physics, Faculty of Physics, Alzahra University, Tehran, 1993891167, Iran.
A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!