CD44 Targeted Lipid Nanoparticles for MicroRNA Therapy.

Methods Mol Biol

Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.

Published: April 2019

MicroRNAs are small noncoding RNAs that function as powerful endogenous regulators of gene expression. Dysregulation of MicroRNA biogenesis has been correlated with the onset and progression of many human diseases. MicroRNA therapy involves the re-equilibration of aberrant intracellular MicroRNA expression profiles for long-term disease management. Despite the significant potential of MicroRNA therapy, the utilization of MicroRNA-based therapeutics has been drastically hindered in practice by the lack of a targeted and translatable delivery vehicle. CD44 is a cell surface glycoprotein that facilitates cellular communication and motility through cell-cell and cell-extracellular matrix interactions. CD44 has been shown to be elevated in multiple disease states including cancer making it a potential diagnostic biomarker and an ideal receptor for targeted drug delivery systems. We describe a method for targeting CD44 using a lipid nanocarrier for the cytoplasmic delivery of active MicroRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8661-3_8DOI Listing

Publication Analysis

Top Keywords

microrna therapy
12
microrna
6
cd44
4
cd44 targeted
4
targeted lipid
4
lipid nanoparticles
4
nanoparticles microrna
4
therapy micrornas
4
micrornas small
4
small noncoding
4

Similar Publications

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Sinomenine attenuates uremia vascular calcification by miR-143-5p.

Sci Rep

January 2025

Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China.

Vascular calcification is considered to be a killer of the cardiovascular system, involved inflammation and immunity. There is no approved therapeutic strategy for the prevention of vascular calcification. Sinomenine exhibited anti-inflammatory and immunosuppressive effects.

View Article and Find Full Text PDF

This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.

View Article and Find Full Text PDF

The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!