Estimating tomato tolerance to heavy metal toxicity: cadmium as study case.

Environ Sci Pollut Res Int

Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.

Published: September 2018

This work aimed to develop a reliable and fast approach to estimate the plant tolerance degree to heavy metal (HM) phytotoxicity. Two independent experiments were carried out using tomato accessions, with contrasting morphological features, that were grown in a hydroponic solution containing different CdCl concentrations for 7 days. Plant dry weight and chlorophyll content (SPAD units) were evaluated, and tolerance degree to Cd toxicity was estimated according to the tolerance index (TI), which is a new mathematical formula based on plant biomass proposed in this study. Although with different magnitudes, tomato exhibited reductions in their dry weight concurrently with the increasing CdCl concentration. By contrast, chlorophyll content presented no standard response, decreasing and even increasing according to CdCl concentrations, indicating that only under certain conditions (particularly, at CdCl 50 μM), this parameter can be used to estimate plant tolerance to Cd toxicity. TI was efficiently able to segregate tomato cultivars with similar performance (based on the total dry weight of plants), and such segregation was optimized when the hydroponic solution contained from 25 to 50 μM CdCl. Within this range, data pointed at 35 μM CdCl as the best concentration to be employed in studies related to the tomato tolerance/sensitivity to Cd toxicity. In conclusion, TI proved to be a reliable estimator of tolerance degree to Cd exposure in genetically distinct tomato accessions. Moreover, TI can be used for this same purpose in plants under other HM-induced stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2778-4DOI Listing

Publication Analysis

Top Keywords

tolerance degree
12
dry weight
12
heavy metal
8
estimate plant
8
plant tolerance
8
tomato accessions
8
hydroponic solution
8
cdcl concentrations
8
chlorophyll content
8
increasing cdcl
8

Similar Publications

Metabolite Profiling and Association Analysis of Leaf Tipburn in Heat-Tolerant Bunching Onion Varieties.

Plants (Basel)

January 2025

Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.

The bunching onion is an important leafy vegetable, prized for its distinctive flavor and color. It is consumed year-round in Japan, where a stable supply is essential. However, in recent years, the challenges posed by climate change and global warming have resulted in adverse effects on bunching onions, including stunted growth, discoloration, and the development of leaf tipburn, threatening both crop quality and yield.

View Article and Find Full Text PDF

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

Probiotics are beneficial to humans and animals and often used for regulating immunity, intestinal microbiota balance, and animal growth performance. Donkey husbandry has boomed in China in recent years and there is an urgent need for probiotics effective for improving donkey health. However, studies on potential probiotic strains isolated from donkeys are scarce.

View Article and Find Full Text PDF

Changes in Antioxidant and Photosynthetic Capacity in Rice Under Different Substrates.

Biology (Basel)

January 2025

School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China.

Against the backdrop of a changing global climate, the soil environment may undergo significant changes, directly affecting agricultural productivity and exacerbating global food security issues. Three different substrates were set up in this study, namely, S (high sand and low nutrient content), T (medium sand and medium nutrient content), and TT (low sand and high nutrient content). The results showed that the root/shoot ratio increased as the sand content increased (nutrient content decreased).

View Article and Find Full Text PDF

People in Eastern Asia, including Japan, traditionally consume higher amounts of sodium chloride than in the United States and Western Europe, and it is common knowledge that impaired insulin secretion-rather than insulin resistance-is highly prevalent in Asian people who have diabetes mellitus. We previously reported that mice fed a high-fat and high-sodium chloride (HFHS) diet had a relatively lower degree of obesity than mice fed a high-fat diet, but had a comparatively impaired insulin secretion. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been shown to dampen down the sympathetic nervous system, which reportedly is activated by a high-sodium chloride diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!