One decisive factor controlling the distribution of organisms in their natural habitats is the cellular response to environmental factors. Compared to prokaryotes, our knowledge about salt adaptation strategies of microbial eukaryotes is very limited. We, here, used a recently introduced approach (implementing proton nuclear magnetic resonance spectroscopy) to investigate the presence of compatible solutes in halophilic, heterotrophic ciliates. Therefore, we isolated four ciliates from solar salterns, which were identified as Cyclidium glaucoma, Euplotes sp., Fabrea salina, and Pseudocohnilembus persalinus based on their 18S rRNA gene signatures and electron microscopy. The results of H-NMR spectroscopy revealed that all four ciliates employ the "low-salt-in" strategy by accumulating glycine betaine and ectoine as main osmoprotectants. We recorded a linear increase of these compatible solutes with increasing salinity of the external medium. Ectoine in particular stands out as its use as compatible solute was thought to be exclusive to prokaryotes. However, our findings and those recently made on two other heterotroph species call for a re-evaluation of this notion. The observation of varying relative proportions of compatible solutes within the four ciliates points to slight differences in haloadaptive strategies by regulatory action of the ciliates. Based on this finding, we provide an explanatory hypothesis for the distribution of protistan diversity along salinity gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-018-1230-0 | DOI Listing |
Eur J Hosp Pharm
January 2025
Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, Utrecht, The Netherlands.
Objectives: Critically ill newborn infants often require simultaneous administration of multiple intravenous (IV) solutions through the same catheter lumen, making compatibility of these solutions crucial in neonatal intensive care units (NICUs). This study aimed to investigate the physical compatibility of insulin aspart, lidocaine, alprostadil and vancomycin with individualised two-in-one parenteral nutrition (PN).
Methods: The study was conducted at the hospital pharmacy's drug compounding facility of the University Medical Centre Utrecht.
Int J Biol Macromol
January 2025
Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address:
Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties.
View Article and Find Full Text PDFEnviron Res
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.
View Article and Find Full Text PDFStat Med
February 2025
U.S. Food and Drug Administration, Silver Spring, Maryland.
The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!