Deep reinforcement learning for de novo drug design.

Sci Adv

Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.

Published: July 2018

We have devised and implemented a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks-generative and predictive-that are trained separately but are used jointly to generate novel targeted chemical libraries. ReLeaSE uses simple representation of molecules by their simplified molecular-input line-entry system (SMILES) strings only. Generative models are trained with a stack-augmented memory network to produce chemically feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo-generated compounds. In the first phase of the method, generative and predictive models are trained separately with a supervised learning algorithm. In the second phase, both models are trained jointly with the RL approach to bias the generation of new chemical structures toward those with the desired physical and/or biological properties. In the proof-of-concept study, we have used the ReLeaSE method to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity, or toward compounds with inhibitory activity against Janus protein kinase 2. The approach proposed herein can find a general use for generating targeted chemical libraries of novel compounds optimized for either a single desired property or multiple properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059760PMC
http://dx.doi.org/10.1126/sciadv.aap7885DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
12
chemical libraries
12
models trained
12
deep reinforcement
8
desired properties
8
trained separately
8
targeted chemical
8
smiles strings
8
predictive models
8
properties
5

Similar Publications

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Accurate interoceptive processing in decision-making is essential to maintain homeostasis and overall health. Disruptions in this process have been associated with various psychiatric conditions, including depression. Recent studies have focused on nutrient homeostatic dysregulation in depression for effective subtype classification and treatment.

View Article and Find Full Text PDF

Background: Molecular interactions between proteins and their ligands are important for drug design. A pharmacophore consists of favorable molecular interactions in a protein binding site and can be utilized for virtual screening. Pharmacophores are easiest to identify from co-crystal structures of a bound protein-ligand complex.

View Article and Find Full Text PDF

Background: This study was undertaken to understand the role of the Health Care Assistants and how they negotiate roles and responsibilities with Registered Nurses in adult acute hospitals.

Methods: The qualitative approach of focused ethnography used non-participant observation and interviews with staff from four acute wards. Field notes and interview data, analysed using NVIVO10, moved data from description through explanation, interpretation and identification of themes.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!