Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040257 | PMC |
http://dx.doi.org/10.1155/2018/6798712 | DOI Listing |
Nat Cell Biol
January 2025
Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFBackground: Despite significant advancements in the development of blood biomarkers for AD, challenges persist due to the complex interplay of genetic and environmental risk factors in AD pathogenesis. Epigenetic processes, including non-coding RNAs and especially microRNAs (miRs), have emerged as important players in the molecular mechanisms underlying neurodegenerative diseases. MiRs have the ability to fine-tune gene expression and proteostasis, and microRNAome profiling in liquid biopsies is gaining increasing interest since changes in miR levels can indicate the presence of multiple pathologies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Baylor College of Medicine, Houston, TX, USA.
Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Background: Alzheimer's disease (AD) stands as the predominant form of dementia worldwide. The pathogenesis of AD encompasses elevated brain levels of amyloid-β oligomers (AβOs), recognized as central neurotoxins linked to AD. The accumulation of AβOs is neurotoxic, resulting in detrimental effects such as synapse loss, mitochondrial dysfunction, and impairment of proteostasis mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!