Necroptosis complements apoptosis as a host defense pathway to stop virus infection. Herpes simplex virus shows a propensity to trigger necroptosis of mouse cells and mice even though cell death is blocked in human cells through UL39-encoded ICP6. This ribonucleotide reductase large subunit (R1) nucleates RHIM-dependent oligomerization of RIP3 kinase (RIPK3, also known as RIP3) in mouse cells but inhibits activation in cells from the natural human host. By interrogating the comparative behavior of ICP6-deficient viruses in mouse and human cells, here we unveil virus-induced necroptosis mediated by Z-DNA-binding protein 1 (ZBP1, also known as DAI). ZBP1 acts as a pathogen sensor to detect nascent RNA transcripts rather than input viral DNA or viral DNA generated through replication. Consistent with the implicated role of virus-induced necroptosis in restricting infection, viral pathogenesis is restored in Zbp1, Ripk3 and Mlkl mice. Thus, in addition to direct activation of RIPK3 via ICP6, HSV1 infection in mice and mouse cells triggers virus-induced necroptosis through ZBP1. Importantly, virus-induced necroptosis is also induced in human HT-29 cells by ICP6 mutant viruses; however, ZBP1 levels must be elevated for this pathway to be active. Thus, our studies reveal a common, species-independent role of this nucleic acid sensor to detect the presence of this virus. HSV1 ICP6 functions as a bona fide RHIM signaling inhibitor to block virus-induced necroptosis in its natural host. Altogether, ZBP1-dependent restriction of herpesvirus infection emerges as a potent antiviral armament of the innate immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062522PMC
http://dx.doi.org/10.1038/s41419-018-0868-3DOI Listing

Publication Analysis

Top Keywords

virus-induced necroptosis
20
mouse cells
12
necroptosis
8
host defense
8
human cells
8
sensor detect
8
viral dna
8
cells
7
virus-induced
5
zbp1
5

Similar Publications

Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies.

Vet Sci

November 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.

Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection.

View Article and Find Full Text PDF

Virus-induced cell death is a key contributor to COVID-19 pathology. Cell death induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is well studied in myeloid cells but less in its primary host cell type, angiotensin-converting enzyme 2 (ACE2)-expressing human airway epithelia (HAE). SARS-CoV-2 induces apoptosis, necroptosis, and pyroptosis in HAE organotypic cultures.

View Article and Find Full Text PDF

The involvement of necroptosis in the control of influenza A virus (IAV) infection has been reported in multiple studies. Downstream of the nucleic acid sensor ZBP1, RIPK3 kinase activity is critically involved in the induction of necroptotic cell death by phosphorylating MLKL, while RIPK3 as a scaffold can induce apoptosis. Paradoxically, RIPK3-deficiency of mice may result in increased or decreased susceptibility to IAV infection.

View Article and Find Full Text PDF

OASL phase condensation induces amyloid-like fibrillation of RIPK3 to promote virus-induced necroptosis.

Nat Cell Biol

January 2023

Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.

RIPK3-ZBP1-MLKL-mediated necroptosis is a proinflammatory cell death process that is crucial for antiviral host defence. RIPK3 self-oligomerization and autophosphorylation are prerequisites for executing necroptosis, yet the underlying mechanism of virus-induced RIPK3 activation remains elusive. Interferon-inducible 2'-5' oligoadenylate synthetase-like (OASL) protein is devoid of enzymatic function but displays potent antiviral activity.

View Article and Find Full Text PDF

Sperm-Associated Antigen 9 Promotes Influenza A Virus-Induced Cell Death via the c-Jun N-Terminal Kinase Signaling Pathway.

mBio

June 2022

CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virologygrid.439104.b, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China.

Upon influenza A virus (IAV) infection, the IAV progeny ribonucleoprotein complex, with a defective viral genome, is sensed by DNA-dependent activator of interferon-regulatory factor (DAI). DAI initiates the recruitment of an array of proteins to form a multiprotein platform (PANoptosome), which triggers apoptosis, necroptosis, and pyroptosis during IAV infection. However, the mechanisms mediating the assembly of the PANoptosome are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!