Artisanal and small-scale gold mining (ASGM) in Madre de Dios, Peru, continues to expand rapidly, raising concerns about increases in loading of mercury (Hg) to the environment. We measured physicochemical parameters in water and sampled and analyzed sediments and fish from multiple sites along one ASGM-impacted river and two unimpacted rivers in the region to examine whether Hg concentrations were elevated and possibly related to ASGM activity. We also analyzed the 308 fish samples, representing 36 species, for stable isotopes (δN and δC) to estimate their trophic position. Trophic position was positively correlated with the log-transformed Hg concentrations in fish among all sites. There was a lack of relationship between Hg concentrations in fish and either Hg concentrations in sediments or ASGM activity among sites, suggesting that fish Hg concentrations alone is not an ideal bioindicator of site-specific Hg contamination in the region. Fish Hg concentrations were not elevated in the ASGM-impacted river relative to the other two rivers; however, sediment Hg concentrations were highest in the ASGM-impacted river. Degraded habitat conditions and commensurate shifts in fish species and ecological processes may influence Hg bioaccumulation in the ASGM-impacted river. More research is needed on food web dynamics in the region to elucidate any effects caused by ASGM, especially through feeding relationships and food sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121527 | PMC |
http://dx.doi.org/10.3390/ijerph15081584 | DOI Listing |
Microb Ecol
October 2023
Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia.
Selikat river, located in the north part of Bengkulu Province, Indonesia, has critical environmental and ecological issues of contamination by mercury due to artisanal small-scale gold mining (ASGM) activities. The present study focused on the identification and bioremediation efficiency of the mercury-resistant bacteria (MRB) isolated from ASGM-impacted areas in Lebong Tambang village, Bengkulu Province, and analyzed their merA gene function in transforming Hg to Hg. Thirty-four MRB isolates were isolated, and four out of the 34 isolates exhibited not only the highest degree of resistance to Hg (up to 200 ppm) but also to cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb).
View Article and Find Full Text PDFSci Adv
November 2020
Department of Geological Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
Artisanal and small-scale gold mining (ASGM) is the largest global source of anthropogenic mercury emissions. However, little is known about how effectively mercury released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake area in heavily mined watersheds has increased by 670% between 1985 and 2018 and that lakes in this area convert mercury into methylmercury at net rates five to seven times greater than rivers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2020
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.
Artisanal and small-scale gold mining (ASGM) is a significant contributor of mercury (Hg) contamination and deforestation across the globe. In the Colorado River watershed in Madre de Dios, Peru, mining and deforestation have increased exponentially since the 1980s, resulting in major socioeconomic shifts in the region and two national state of emergency (2016 and 2019) in response to concerns for wide-scale mercury poisoning by these activities. This research employed a watershed-scale soil particle detachment model and environmental field sampling to estimate the role of land cover change and soil erosion on river transport of Hg in a heavily ASGM-impacted watershed.
View Article and Find Full Text PDFSci Total Environ
June 2019
Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, CH-1205 Geneva, Switzerland.
In Senegal, the environmental impact of artisanal small-scale gold mining (ASGM) using mercury (Hg) is poorly documented despite its intensification over the past two decades. We report here a complete dataset including the distribution and speciation of Hg in soil, sediment, and water in pristine and ASGM impacted sites of the Gambia River ecosystem (Kedougou region - eastern Senegal). Selective extraction showed that soils surrounding ASGM activities were contaminated with elemental Hg [Hg(0)] at concentrations up to 3.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2018
Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios 17000, Peru.
Artisanal and small-scale gold mining (ASGM) in Madre de Dios, Peru, continues to expand rapidly, raising concerns about increases in loading of mercury (Hg) to the environment. We measured physicochemical parameters in water and sampled and analyzed sediments and fish from multiple sites along one ASGM-impacted river and two unimpacted rivers in the region to examine whether Hg concentrations were elevated and possibly related to ASGM activity. We also analyzed the 308 fish samples, representing 36 species, for stable isotopes (δN and δC) to estimate their trophic position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!