Cyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the oocyte heterologous expression system. Current was not observed in oocytes injected with complementary RNA (cRNA) in a bathing solution containing either Na⁺ or K⁺ solely, even in the presence of 8-bromoadenosine 3',5'-cyclic monophosphate (8Br-cAMP) or 8-bromoguanosine 3',5'-cyclic monophosphate (8Br-cGMP). A weakly voltage-dependent slow hyperpolarization-activated ion current was observed in the co-presence of Na⁺ and K⁺ in the bathing solution and in the presence of 10 µM 8Br-cAMP, but not 8Br-cGMP. Permeability ratios of HvCNGC2-3 to K⁺, Na⁺ and Cl were determined as 1:0.63:0.03 according to reversal-potential analyses. Amino-acid replacement of the unique ion-selective motif of HvCNGC2-3, AQGL, with the canonical motif, GQGL, resulted in the abolition of the current. This study reports a unique two-ion-dependent activation characteristic of the barley CNGC, HvCNGC2-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161278PMC
http://dx.doi.org/10.3390/plants7030061DOI Listing

Publication Analysis

Top Keywords

na⁺ k⁺
16
cyclic nucleotide-gated
8
co-presence na⁺
8
current observed
8
bathing solution
8
3'5'-cyclic monophosphate
8
hvcngc2-3
5
na⁺
5
k⁺
5
nucleotide-gated channel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!