Purpose: To quantify the effects of the hydration state on the Young's modulus of the cornea.
Setting: Biomedical Optics Laboratory, University of Houston, Houston, Texas, USA.
Design: Experimental study.
Methods: Noncontact, dynamic optical coherence elastography (OCE) measurements were taken of in situ rabbit corneas in the whole eye-globe configuration (n = 10) and at an artificially controlled intraocular pressure of 15 mm Hg. Baseline OCE measurements were taken by topically hydrating the corneas with saline for 1 hour. The corneas were then dehydrated topically with a 20% dextran solution for another hour, and the OCE measurements were repeated. A finite element method was used to quantify the Young's modulus of the corneas based on the OCE measurements.
Results: The thickness of the corneas shrank considerably after topical addition of the 20% dextran solution (∼680 μm to ∼370 μm), and the OCE-measured elastic-wave speed correspondingly decreased (∼3.2 m/s to ∼2.6 m/s). The finite element method results showed an increase in Young's modulus (500 kPa to 800 kPa) resulting from dehydration and subsequent thinning.
Conclusion: Young's modulus increased significantly as the corneas dehydrated and thinned, showing that corneal geometry and hydration state are critical factors for accurately quantifying corneal biomechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097919 | PMC |
http://dx.doi.org/10.1016/j.jcrs.2018.03.036 | DOI Listing |
Phys Rev Lett
December 2024
CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.
Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.
Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.
View Article and Find Full Text PDFCarbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland.
This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!