Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography.

J Cataract Refract Surg

From Biomedical Engineering (Singh, Li, Larin) and the College of Optometry (Vantipalli), Mechanical Engineering (Aglyamov), University of Houston, and Molecular Physiology and Biophysics (Larin), Baylor College of Medicine, Houston, Texas, and the School of Optometry (Twa) and Biomedical Engineering (Twa), University of Alabama at Birmingham, Birmingham, Alabama, USA; The School of Naval Architecture (Han), Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China; Interdisciplinary Laboratory of Biophotonics (Larin), Tomsk State University, Tomsk, Russia. Electronic address:

Published: August 2018

Purpose: To quantify the effects of the hydration state on the Young's modulus of the cornea.

Setting: Biomedical Optics Laboratory, University of Houston, Houston, Texas, USA.

Design: Experimental study.

Methods: Noncontact, dynamic optical coherence elastography (OCE) measurements were taken of in situ rabbit corneas in the whole eye-globe configuration (n = 10) and at an artificially controlled intraocular pressure of 15 mm Hg. Baseline OCE measurements were taken by topically hydrating the corneas with saline for 1 hour. The corneas were then dehydrated topically with a 20% dextran solution for another hour, and the OCE measurements were repeated. A finite element method was used to quantify the Young's modulus of the corneas based on the OCE measurements.

Results: The thickness of the corneas shrank considerably after topical addition of the 20% dextran solution (∼680 μm to ∼370 μm), and the OCE-measured elastic-wave speed correspondingly decreased (∼3.2 m/s to ∼2.6 m/s). The finite element method results showed an increase in Young's modulus (500 kPa to 800 kPa) resulting from dehydration and subsequent thinning.

Conclusion: Young's modulus increased significantly as the corneas dehydrated and thinned, showing that corneal geometry and hydration state are critical factors for accurately quantifying corneal biomechanical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097919PMC
http://dx.doi.org/10.1016/j.jcrs.2018.03.036DOI Listing

Publication Analysis

Top Keywords

young's modulus
16
oce measurements
12
effects hydration
8
optical coherence
8
coherence elastography
8
hydration state
8
corneas dehydrated
8
20% dextran
8
dextran solution
8
finite element
8

Similar Publications

Generic Elasticity of Thermal, Underconstrained Systems.

Phys Rev Lett

December 2024

CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.

Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.

View Article and Find Full Text PDF

This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!