Mutations which permit cAMP binding protein (CRP) to act in the absence of cAMP have been isolated by in vitro mutagenesis of a plasmid containing the cloned crp gene. Adenylate cyclase deficient cells harbouring the mutant (crp*) plasmids exhibited a variety of fermentation profiles on MacConkey indicator plates containing various sugars. beta-galactosidase synthesis in cells carrying the crp* plasmids was activated most by the addition of cGMP as well as cAMP. The sites of mutations which are responsible for the cAMP independent phenotype were determined by in vitro recombination and DNA sequencing. The amino acid substitutions in the mutant proteins were found in two specific regions of the crp gene encoding residues 53-62 and 141-148 of CRP polypeptide. The first region may participate in cAMP binding, while the second appears to be the inter-domain region of the N-terminal cAMP-binding and C-terminal DNA-binding domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554661PMC
http://dx.doi.org/10.1002/j.1460-2075.1985.tb04084.xDOI Listing

Publication Analysis

Top Keywords

camp binding
8
crp gene
8
crp* plasmids
8
camp
6
mutations alter
4
alter allosteric
4
allosteric nature
4
nature camp
4
camp receptor
4
receptor protein
4

Similar Publications

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT Receptor Inverse Agonists.

ACS Chem Neurosci

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.

The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.

View Article and Find Full Text PDF

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent protein kinase A (PKA) suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1.

View Article and Find Full Text PDF

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

Ectopic olfactory receptors are expressed in nonolfactory tissues and perform diverse roles including regulation of glucose homeostasis. We explored the effect of citronellal treatment on olfactory receptor 4M1 subtype (OR4M1) signaling in insulin resistance and Type II diabetes in rats. We aimed to validate the anti-diabetic effect of citronellal through Asprosin/OR4M1 modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!