A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Knee moment outcomes using inverse dynamics and the cross product function in moderate knee osteoarthritis gait: A comparison study. | LitMetric

Knee moment outcomes using inverse dynamics and the cross product function in moderate knee osteoarthritis gait: A comparison study.

J Biomech

School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada. Electronic address:

Published: September 2018

Inverse dynamics are the cornerstone of biomechanical assessments to calculate knee moments during walking. In knee osteoarthritis, these outcomes have been used to understand knee pathomechanics, but the complexity of an inverse dynamic model may limit the uptake of joint moments in some clinical and research structures. The objective was to determine whether discrete features of the sagittal and frontal plane knee moments calculated using inverse dynamics compare to knee moments calculated using a cross product function. Knee moments from 74 people with moderate knee osteoarthritis were assessed after ambulating at a self-selected speed on an instrumented dual belt treadmill. Standardized procedures were used for surface marker placement, gait speed determination and data processing. Net external frontal and sagittal plane knee moments were calculated using inverse dynamics and the three-dimensional position of the knee joint center with respect to the center of pressure was crossed with the three-dimensional ground reaction forces in the cross product function. Correlations were high between outcomes of the moment calculations (r > 0.9) and for peak knee adduction moment, knee adduction moment impulse and difference between peak flexion and extension moments, the cross product function resulted in absolute values less than 10% of those calculated using inverse dynamics in this treadmill walking environment. This computational solution may allow the integration of knee moment calculations to understand knee osteoarthritis gait without data collection or computational complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2018.07.021DOI Listing

Publication Analysis

Top Keywords

inverse dynamics
20
knee moments
20
cross product
16
product function
16
knee osteoarthritis
16
knee
15
moments calculated
12
calculated inverse
12
knee moment
8
moderate knee
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!