Poly(vinyl alcohol) (PVA) hydrogels have been considered as promising implants for various soft tissue engineering applications because of their tissue-like viscoelasticity and biocompatibility. However, two critical barriers including lack of sufficient mechanical properties and non-tissue-adhesive characterization limit their application as tissue substitutes. Herein, PVA is methacrylated with ultralow degrees of substitution of methacryloyl groups to produce PVA-glycidyl methacrylate (GMA). Subsequently, the PVA-GMA/methacrylate-functionalized silica nanoparticle (MSi)-based nanocomposite hydrogels are developed via the photopolymerization approach. Interestingly, both PVA-GMA-based hydrogels and PVA-GMA/MSi-based nanocomposite hydrogels exhibit outstanding compressive properties, which cannot be damaged through compressive stress-strain tests in the allowable scope of a tensile tester. Moreover, PVA-GMA/MSi-based nanocomposite hydrogels demonstrate excellent tensile properties compared with neat PVA-GMA-based hydrogels, and 15-, 14-, and 24-fold increase in fracture stress, elastic modulus, and toughness, respectively, is achieved for the PVA-GMA/MSi-based hydrogels with 10 wt % of MSi. These remarkable enhancements can be ascribed to the amount of long and flexible polymer chains of PVA-GMA and the strong interactions between the MSi and PVA-GMA chains. More interestingly, exciting improvements in the cell adhesion can also be successfully achieved by the incorporation of MSi nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b09026DOI Listing

Publication Analysis

Top Keywords

nanocomposite hydrogels
16
hydrogels
8
cell adhesion
8
pva-gma-based hydrogels
8
pva-gma/msi-based nanocomposite
8
high-performance photopolymerized
4
photopolymerized polyvinyl
4
polyvinyl alcohol/silica
4
nanocomposite
4
alcohol/silica nanocomposite
4

Similar Publications

The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.

View Article and Find Full Text PDF

Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy.

Carbohydr Polym

March 2025

State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China. Electronic address:

Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe as cross-linkers.

View Article and Find Full Text PDF

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

Injectable, self-healing and phase change nanocomposite gels loaded with two nanotherapeutic agents for mild-temperature, precise and synergistic photothermal-thermodynamic tumor therapy.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China. Electronic address:

Hyperthermia has emerged as a popular treatment option due to its high efficacy and seamless integration with other therapeutic approaches. To enhance treatment outcomes, hydrogels loaded with photothermal agents and activated by near-infrared (NIR) light for localized tumor therapy have attracted considerable attention. This approach minimizes drug dosage and mitigates the adverse effects of systemic drug delivery on healthy tissues.

View Article and Find Full Text PDF

A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition.

Int J Biol Macromol

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:

Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!