Detecting regular patterns in the environment, a process known as statistical learning, is essential for survival. Neuronal adaptation is a key mechanism in the detection of patterns that are continuously repeated across short (seconds to minutes) temporal windows. Here, we found in mice that a subcortical structure in the auditory midbrain was sensitive to patterns that were repeated discontinuously, in a temporally sparse manner, across windows of minutes to hours. Using a combination of behavioral, electrophysiological, and molecular approaches, we found changes in neuronal response gain that varied in mechanism with the degree of sound predictability and resulted in changes in frequency coding. Analysis of population activity (structural tuning) revealed an increase in frequency classification accuracy in the context of increased overlap in responses across frequencies. The increase in accuracy and overlap was paralleled at the behavioral level in an increase in generalization in the absence of diminished discrimination. Gain modulation was accompanied by changes in gene and protein expression, indicative of long-term plasticity. Physiological changes were largely independent of corticofugal feedback, and no changes were seen in upstream cochlear nucleus responses, suggesting a key role of the auditory midbrain in sensory gating. Subsequent behavior demonstrated learning of predictable and random patterns and their importance in auditory conditioning. Using longer timescales than previously explored, the combined data show that the auditory midbrain codes statistical learning of temporally sparse patterns, a process that is critical for the detection of relevant stimuli in the constant soundscape that the animal navigates through.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065201PMC
http://dx.doi.org/10.1371/journal.pbio.2005114DOI Listing

Publication Analysis

Top Keywords

auditory midbrain
16
statistical learning
12
temporally sparse
8
auditory
5
patterns
5
changes
5
midbrain coding
4
coding statistical
4
learning
4
learning discontinuous
4

Similar Publications

The auditory midbrain mediates tactile vibration sensing.

Cell

December 2024

Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. Electronic address:

Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are distinguished by their ability to entrain to high-frequency (40-1,000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain.

View Article and Find Full Text PDF

Midbrain encodes sound detection behavior without auditory cortex.

Elife

December 2024

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.

Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals' behavior can be decoded from the activity of those neurons with a high degree of accuracy.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a therapeutic intervention previously shown to enhance fear extinction in rats. VNS is approved for use in humans for the treatment of epilepsy, depression, and stroke, and it is currently under investigation as an adjuvant to exposure therapy in the treatment of PTSD. However, the mechanisms by which VNS enhances extinction of conditioned fear remain unresolved.

View Article and Find Full Text PDF

Protocol for identifying sound-activated neurons in the inferior colliculus by cFos immunostaining.

STAR Protoc

December 2024

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK. Electronic address:

cfos is an immediate early gene commonly used to identify neuronal activation. After loud sound stimulation, neurons in the inferior colliculus are activated and cFos is expressed in the nucleus. Here, we present a protocol for quantifying neuronal activity in response to auditory stimulation using cFos immunostaining in the mouse inferior colliculus.

View Article and Find Full Text PDF

Ensemble responses of auditory midbrain neurons in the cat to speech stimuli at different signal-to-noise ratios.

Hear Res

December 2024

Bionics Institute, Fitzroy, Victoria, Australia; Medical Bionics Department, The University of Melbourne, Parkville, Victoria, Australia.

Originally reserved for those who are profoundly deaf, cochlear implantation is now common for people with partial hearing loss, particularly when combined with a hearing aid. This combined intervention enhances speech comprehension and sound quality when compared to electrical stimulation alone, particularly in noisy environments, but the physiological basis for the benefits is not well understood. Our long-term aim is to elucidate the underlying physiological mechanisms of this improvement, and as a first step in this process, we have investigated in normal hearing cats, the degree to which the patterns of neural activity evoked in the inferior colliculus (IC) by speech sounds in various levels of noise allows discrimination between those sounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!