Movement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim unites methods from these fields to create fast and accurate simulations of movement, enabling two fundamental tasks. First, the software can calculate variables that are difficult to measure experimentally, such as the forces generated by muscles and the stretch and recoil of tendons during movement. Second, OpenSim can predict novel movements from models of motor control, such as kinematic adaptations of human gait during loaded or inclined walking. Changes in musculoskeletal dynamics following surgery or due to human-device interaction can also be simulated; these simulations have played a vital role in several applications, including the design of implantable mechanical devices to improve human grasping in individuals with paralysis. OpenSim is an extensible and user-friendly software package built on decades of knowledge about computational modeling and simulation of biomechanical systems. OpenSim's design enables computational scientists to create new state-of-the-art software tools and empowers others to use these tools in research and clinical applications. OpenSim supports a large and growing community of biomechanics and rehabilitation researchers, facilitating exchange of models and simulations for reproducing and extending discoveries. Examples, tutorials, documentation, and an active user forum support this community. The OpenSim software is covered by the Apache License 2.0, which permits its use for any purpose including both nonprofit and commercial applications. The source code is freely and anonymously accessible on GitHub, where the community is welcomed to make contributions. Platform-specific installers of OpenSim include a GUI and are available on simtk.org.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061994 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006223 | DOI Listing |
Eur J Neurol
January 2025
Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.
Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.
Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.
J Clin Med
December 2024
Pető András Faculty, Semmelweis University, 1125 Budapest, Hungary.
Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Orthopaedic and Trauma Surgery, Magna Graecia University, R. Dulbecco University Hospital, 88100 Catanzaro, Italy.
: Improper neuromuscular control with excessive dynamic valgus loading of the knee has been identified as one of the main anterior cruciate ligament injury risk factors. This study aimed to analyze the impact of the FIFA 11+ training program on the valgus loading of the knee in academy soccer players over a competitive season. : A prospective study was conducted on 85 players.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.
Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.
View Article and Find Full Text PDFCurr Rheumatol Rev
January 2025
University of Genoa, DISC Department, School of Medical and Pharmaceutical Sciences, Research Center of Osteoporosis and Osteoarticular Pathologies, Italy.
ATP is involved in numerous physiological functions, such as neurotransmission, modulation, and secretion, as well as in cell proliferation, differentiation, and death. While ATP serves an essential intracellular role as a source of energy, it behaves differently in the extracellular environment, where it acts as a signaling molecule capable of activating specific purinergic receptors (P2YRs and P2XRs) that modulate the response to ATP. Extracellular ATP signaling is a dynamic area of research, with particular interest in ATP's effects on inflammatory conditions and pain modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!